Main Sequence Evolution
- core hydrogen burning phase

Post Main Sequence Evolution
- hydrogen shell burning
- helium burning
- red giant phases
- pulsation and mass loss

NEXT: Stellar Corpses; Supernovae

Evolution of Low and Intermediate-Mass Stars

Core H burning on MS
- PP v. CNO

Shell H burning -> RGB
- He core
 - flash (M < 1.8 M☉)
 - burn (M > 1.8 M☉)

He shell burning -> AGB
- C/O core - SN?
 - M < 1.44 M☉

• convection zone dips down to H burning shell; first "dredge up" (C enriched material)

• Carbon stars
 - S (C/O ~1) type
 - R, N (C/O > 1) type

• outer layer weakly bound -> strong stellar winds
 - spill carbon-rich dust into ISM
 - considerable mass loss (can affect evolution)

• becomes unstable against pulsation
 - He-shell flashes; instability strip (more about this later)

• outer shell puffs off into Planetary Nebula

• carbon-oxygen rich White Dwarf core remains

Evolution of Intermediate Mass Stars

• CNO cycle comparable or dominant to PP chain
• Evolution proceeds as in solar-mass stars
• If M ≥ 4 M☉ no Helium flash; instead...
 • core does not become degenerate; Triple-alpha starts (T > 10⁸ K) right away; still create C/O core
 • if hot enough, could ignite ¹²C core in runaway reaction
 • unlike He flash, this completely destroys star in a (type I and a half) Supernova explosion
Evolution of High-Mass Stars

Supergiants
Wolf-Rayet Stars
LBV’s
SN progenitors
NS & BH parents
nucleosynthesis
enrich and mix ISM
drive/stop star formation

Evolution of High-Mass Stars

• proceed as lower mass stars, but continue core-shell burning all the way up to Si, which produces an Iron core
• for 20 M_\odot star...
 – H 10^7 y
 – He 10^4 y
 – C 300 y
 – O 200 d
 – Si 2 d

no significant mass change during main sequence lifetime

significant mass can be lost during red giant phases

corpse type (and mass) related to main-sequence mass and to how much mass was lost in red giant phase

<table>
<thead>
<tr>
<th>Star/Loss Mass $10M_\odot$</th>
<th>MS Energy Production</th>
<th>Core Burning</th>
<th>Shell Burning</th>
<th>He Flash?</th>
<th>Final Core</th>
<th>Corpse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low Mass $10M_\odot$</td>
<td>PP chain</td>
<td>H, He</td>
<td>No</td>
<td>No</td>
<td>H, He</td>
<td>Black dwarf</td>
</tr>
<tr>
<td>Low Mass Stars $0.1M_\odot$</td>
<td>H, He, H, He</td>
<td>H, He</td>
<td>No</td>
<td>No</td>
<td>H, He</td>
<td>Black dwarf</td>
</tr>
<tr>
<td>Solar Mass Stars $0.4M_\odot$</td>
<td>CNO cycle (0.6 to 1.2 M_\odot)</td>
<td>H, He, H, He</td>
<td>No</td>
<td>No</td>
<td>H, He</td>
<td>Black dwarf</td>
</tr>
<tr>
<td>Intermediate Mass $4M_\odot$</td>
<td>CNO-dominated</td>
<td>H, He, H, He</td>
<td>No</td>
<td>No</td>
<td>C, O, Si</td>
<td>White dwarf or neutron star</td>
</tr>
<tr>
<td>High Mass Stars $50M_\odot$</td>
<td>CNO-dominated</td>
<td>H, He, H, He</td>
<td>No</td>
<td>No</td>
<td>C, O, Si, Si</td>
<td>Neutron star or black hole</td>
</tr>
</tbody>
</table>