

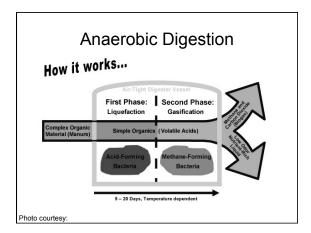
Biofuels

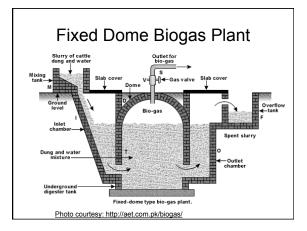
- Biomass is any energy derived from living matter such as field crops, wood products, water plants, and municipal solid waste that is converted into energy.
- This is not an option for a large scale worldwide use.

Fuel	Description	Energy	Advantages	Disadvantages
		1 gal gas =116,090	-	-
Wood Products and	combustion of wood and	7,600-9,600 Btu/lb	-technology advances such as airtight	-smoke containing water vapor, CO2,
Byproducts	byproducts to create thermal heat		stoves and secondary combustion chambers	aerosol particulates, and fine particles (fly
firewood, charcoal, chips,	energy for cooking, heating, and		- This is a readily available source of energy	ash)
sheets, pellets, or sawdust	fueling steam engines		in many developing nations without access	-Gathering and harvesting of fuel has
			to technical resources	serious implications to native sinks
Solid Wastes	Incinerating trash pile-up to	Average 4,500 - 4,800	-mitigating trash pile-up by incineration	- combustion of solid landfill will release air
The waste by-products of	generate steam for energy	Btu/Ib	from large volumes of waste into ash for	pollutants like heavy metals and
one-use consumerism that			long-term storage will save on increasing	carcinogenic chlorine compounds known as
returns to landfills.			space needs	diaxins. Encourages the continued waste
				stream levels
Ethanol	Fermentation and distillation of	76,330 Btu/gal for	-technology exists as a replacement for	-does not have a net reduction in
Food crops including corn,	starches and sugars from food	E100	gasoline without a need to adjust car	greenhouse gas emissions
sugarcane, wood, sugar	crops into a grain or ethyl alcohol		engines.	-land requirements remove options for food
beets and rye.	to produce ethanol.			stuffs and forested lands
Methanol	the gasification of organic	57,250 Btu/gal	-less expensive to produce than ethanol	
Any material made of	materials into a synthetic gas			
carbon, wood products	synthesized into methyl alcohol			
Biodiesel	the transestrification of oils or fats	119,550 Btu/gal for	-technology exists as a replacement for	
vegetable oils or animal fats	with the assistance of methanol	B100	diesel without a need to adjust car engines.	-the utilization of used oil has supply
	and the removal of gum and		-used vegetable oil can be used and will	concern because of the availability in mass
	glycerin by-products		remove the oil from waste stream	quantities and methanol requirements
Biogas	the production of methane gas	At 60 % methane,=6	-utilize already prevalent waste stream to	-bio gas is 40% CO2 and 60% CH4
sewage, animal manure,	from the anaerobic digestion of	kWh/Nm3	create energy. Byproducts of digestion can	-raw biogas has trace elements that require
organic products and waste	organic wastes	*nat'i gas = 11.0	be marketable fro compost.	purification to remove contaminants to be
		kWh/Nm3	-easily adapted to small scale use in	introduced into the gas grid
			developing nations	
Biohydrogen	fermentation of hydrogen from	51,585 Btu/lb	-provides a biologically produced hydrogen	- at this time it is not economically efficient
algae, bacteria, archaea	organic wastes; producing		source	-end-user technologies such as storage
	hydrogen from algae that is			techniques still require development
	deprived of sulfur			1

Advantages and Disadvantages

Advantages


- Biofuel is nontoxic, biodegradable, and free from sulfur. These fuels offer direct energy needs that are available at constant rates for a truly reliable source and replacement to traditional fossil fuels.
- In some cases they are utilizing the human waste stream for additional energy use
 Disadvantages
 - Does not have a net reduction in greenhouse gas emissions when made from major crops due to petroleum used in the conversion of crops to fuel.
- Putting significant energy into producing fuel from crop production results in getting a small net amount from fuel burning. Ethaol has a 1 unit inputor 1.3 unit output. Significant concern comes from the increased agricultural land that is directed away from food crops and the removal of forested lands for increased agriculture land for fuel crops

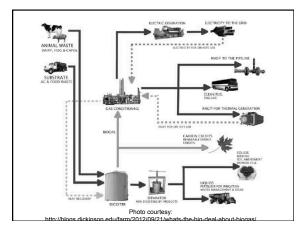

Biogas and Landfill gas

- · Methane produced from decomposition of organic material by bacteria to produce methane and carbon dioxide gases.
- · Anaerobic digestion takes place in digesters that hold any organic waste from human sewage to agricultural manures.
- · Digesting bacteria convert waste to biogas used for energy needs such as heating, cooking, gas refrigerators, and electricity generation.

What is Used

- Municipal organic waste (food waste)
- · Biowaste from industry and business activities
 - fat, waste from grocery stores, biosludge from pulp and paper industry, dairy by-products, rejected animal food, fishery by-products etc.
- Raw sewage sludge
 - produced at wastewater treatment plants
- Manure •
- · Harvest residues

Make up of gas properties

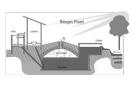

- 45-85 % methane (CH4)
- 15-45 % carbon dioxide (CO2)
- exact proportions depend on the production conditions and processing techniques.
- small amounts
 - hydrogen sulphide (H2S)
 - ammonia (NH3)
 - nitrogen gas (N2)

Energy

- Pure methane 9.81 kWh/Nm3 (9810 Wh/ Nm3) (Normal cubic meters).
- The energy value of biogas varies between 4.5 and 8.5 kWh/Nm3, depending on the relative amounts of methane, carbon dioxide and other gases present.
 - If biogas comprises 60 % methane, the energy content is ~ 6.0 kWh/Nm3.
- One cow's annual output is equivalent to the energy in approximately 50 gallons of gasoline.

Applications

- · Cogeneration gas engines
- Compressed natural gas to fuel combustion engines and fuel cells
- Upgraded to biomethane for introduction into local natural gas grid




Germany Biogas

- 5,905 plants
- 2,291 MW installed electrical capacity
- 12.8 TWh
- · Directly connected to a biomethane CHP and fed to power grid
- · Utilizes bio gas from energy crops and manure

Small Scale Examples in India 2 million households in India, fifty thousand in Bangladesh, and thousands in Pakistan Airtight circular pit of concrete with pipe that is directly connected to fireplace kitchen

through control valves. Manure and bathroom waste mixed with waste water

Landfill Gas

- The gas produced is often more polluted than biogas from an anaerobic digester
- mostly used in gas engines or gas boilers for recovery of heat and/or electricity which can be used on site. Landfill gas becomes explosive when it escapes from the
- landfill and mixes with oxygen. The methane contained within biogas is 20 times more potent as a greenhouse gas than is carbon dioxide.
- Volatile organic compounds (VOCs) contained within landfill gas contribute to the formation of photochemical smog.
- Biogas must be refined and upgraded to use as vehicle fuel while landfill gas cannot due to the high concentration of nitrogen.

Calabasas Landfill

- Los Angeles County, CA
- · Disposes 850 tons per day
- Produces 4,500 scfm of landfill gas at 30% methane
- 7 MW net generation of electricity delivered to the distribution system

Advantages

- · Technology in place to use readily available gas
- Byproduct of digesters is to produce agricultural compost for a marketable use as well.
- Carbon-neutral
- Available for small operations in developing nations
- Utilization of current waste stream in some cases

Disadvantages

- · Agricultural crop use towards energy generation
- · Competition for food
- · Upgrading requirements to the grid
- Reliance on waste stream and increase animal use
- There are too many variables to determine available energy options
 - Historically (2003) 147 trillion Btu of energy was consumed in the US from landfill gas (0.6% of us natural gas consumption)

Sources

- http://www.newscientist.com/article/mg18925401.600-growing-hydrogen-for-the-cars-of-tomorrow.html
- http://www.nrel.gov/docs/fy04osti/35593.pdf
- https://bioenergy.ornl.gov/papers/misc/energy_conv.html •

- http://www-tnswep.ra.utk.edu/activities/pdfs/mu-W.pdf http://www.afdc.energy.gov/fuels/fuel_comparison_chart.pdf http://cdn.intechopen.com/pdfs/11474/INTech-Environmental technology assessment of natural gas com pared to biogas.pdf
- http://www.reap-canada.com/online_library/grass_pellets/ 40%20Developing%20Energy%20Crops%20for%20Thermal %20Ch16-Samson%20et%20al.%202009.pdf