Lec #23: Nuclear Power. II.

LAST TIME: Begin Nuclear Power (Chaps 13-15)

TODAY: 1) Fundamentals of Nuclear Physics;
 2) Reactor Technology;
 3) Prospects for Nuclear Power

NEXT: 1) Fusion Power?
 2) Introduction to Renewables
Periodic Table of Elements

The periodic table is divided into several categories:

- **Metals**
- **Metalloids**
- **Nonmetals**

The table is organized by atomic number, with elements arranged in increasing order. Each element is represented by its atomic number, symbol, and atomic weight.

Transition Metals are highlighted in the middle of the table.

Lanthanides and **Actinides** are listed separately at the bottom of the table.

© 2006 Thomson Higher Education

Lanthanides

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>57</td>
<td>138.9</td>
</tr>
<tr>
<td>Ce</td>
<td>58</td>
<td>140.9</td>
</tr>
<tr>
<td>Pr</td>
<td>59</td>
<td>140.9</td>
</tr>
<tr>
<td>Nd</td>
<td>60</td>
<td>144.2</td>
</tr>
<tr>
<td>Pm</td>
<td>61</td>
<td>150.4</td>
</tr>
<tr>
<td>Sm</td>
<td>62</td>
<td>153.3</td>
</tr>
<tr>
<td>Eu</td>
<td>63</td>
<td>152.0</td>
</tr>
<tr>
<td>Gd</td>
<td>64</td>
<td>157.2</td>
</tr>
<tr>
<td>Tb</td>
<td>65</td>
<td>158.9</td>
</tr>
<tr>
<td>Dy</td>
<td>66</td>
<td>162.5</td>
</tr>
<tr>
<td>Ho</td>
<td>67</td>
<td>164.9</td>
</tr>
<tr>
<td>Er</td>
<td>68</td>
<td>167.3</td>
</tr>
<tr>
<td>Tm</td>
<td>69</td>
<td>168.9</td>
</tr>
<tr>
<td>Yb</td>
<td>70</td>
<td>173.0</td>
</tr>
</tbody>
</table>

Actinides

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>89</td>
<td>227.0</td>
</tr>
<tr>
<td>Th</td>
<td>90</td>
<td>232.0</td>
</tr>
<tr>
<td>Pa</td>
<td>91</td>
<td>231.0</td>
</tr>
<tr>
<td>U</td>
<td>92</td>
<td>238.0</td>
</tr>
<tr>
<td>Np</td>
<td>93</td>
<td>(237.0)</td>
</tr>
<tr>
<td>Pu</td>
<td>94</td>
<td>(244.1)</td>
</tr>
<tr>
<td>Am</td>
<td>95</td>
<td>(243.1)</td>
</tr>
<tr>
<td>Cm</td>
<td>96</td>
<td>(247.1)</td>
</tr>
<tr>
<td>Bk</td>
<td>97</td>
<td>(247.1)</td>
</tr>
<tr>
<td>Cf</td>
<td>98</td>
<td>(251.1)</td>
</tr>
<tr>
<td>Es</td>
<td>99</td>
<td>(252.1)</td>
</tr>
<tr>
<td>Fm</td>
<td>100</td>
<td>(257.1)</td>
</tr>
<tr>
<td>Md</td>
<td>101</td>
<td>(258.1)</td>
</tr>
<tr>
<td>No</td>
<td>102</td>
<td>(259.1)</td>
</tr>
</tbody>
</table>

© 2006 Thomson Higher Education
Fundamentals of Nuclear Physics (cont.)

3. Mass of free particles \((E=mc^2)\)
 - proton \(= 1.6726E-27 \text{ kg} = 938.3 \text{ MeV/c}^2\)
 - neutron \(= 1.6749E-27 \text{ kg} = 939.6 \text{ MeV/c}^2\)
 - electron \(= 9.1094E-31 \text{ kg} = 0.511 \text{ MeV/c}^2\)

4. Binding Energy and Mass of atom \(< m_p n_p + m_n n_n + m_e n_e\)
 - \(\Delta mc^2 = \text{binding energy}\)
 - most of this (MeV’s) is in nucleus

5. Nuclear Structure (protons + neutrons)
 - EM repulsion of protons; neutron immune to EM force
 - must be a force stronger than EM operating over tiny distances
 - more protons -> more EM; more neutrons -> some dilution
 - Atomic Number: \(Z = \# \text{ of protons}; N = \# \text{ of neutrons}\)
 - Nucleon Number: \(A = \# \text{ of nucleons} \left(A = Z + N \right)\)
 - \(\frac{A}{Z} X; \ X \text{ is chemical symbol} \quad \text{e.g.} \quad ^{238}_{92} \text{U} \ (\text{or just} \ 238\text{U})\)
Nuclear Structure

The atomic nucleus consists of positively charged protons and neutral neutrons.

Mass number:

Number of nucleons in the nucleus, $A = Z + N$

Atomic number:

Number of protons in the nucleus

$\text{Unified Mass Unit (u)}$

$1 \text{ u} = 1.6605 \times 10^{-27} \text{ kg}$ \quad \text{or} \quad 1 \text{ u} = 931.5 \text{ MeV}$

$ r \approx (1.2 \times 10^{-15} \text{ m}) A^{1/3}$

Strong Nuclear Force
Fundamentals of Nuclear Physics (cont.)

B. ISOTOPES

- same Z, therefore same chemical properties
- different N (and A), therefore
 - different mass
 - different nuclear binding energy
 - different stability
 - different behavior in nuclear reactions
- elements usually form with a mix of isotopes
- over time, this mix changes, as “unstable” isotopes “decay”
 - e.g. 1H = hydrogen 99.985% stable
 - . 2H = deuterium 0.015% stable
 - . 3H = tritium ~0.000% half-life = 12.3 years
 - e.g. 238U 99.3% half-life = 4.47 billion years
 - . 235U 0.7% half-life = 0.70 billion years
Isotopes of Hydrogen

ISOTOPES: Nuclei that contain the same number of protons but a different number of neutrons.

Protium
- 1 proton

Deuterium
- 1 proton
- 1 neutron

Tritium
- 1 proton
- 2 neutrons

Deuterium is a stable isotope of hydrogen. Symbol: ^2H or D

Tritium is radioactive. Symbol: ^3H. It decays into a proton plus electron and anti-neutrino.
C. STABILITY OF ISOTOPES

- certain combinations of neutron # and proton # hold together for a long time
- others transmute themselves to a different element by radioactive decay (alpha, beta, gamma, fission, …)
- adding neutrons to a stable nucleus generally makes it unstable
- ~400 stable nuclei known; all have $Z \leq 83$ (Bismuth)
- generally stable if Z a/or $N = 2, 8, 20, 28, 50, 82, 126$
 - nuclear “shell” structure analogous to atomic shells
 - ^4He, ^{16}O, ^{40}Ca, etc. are like noble gases – very stable (tightly bound)
Nuclear Reactions

A. Radioactivity

Spontaneous “decay” to a different nuclear state, or even a different type of atom, through the emission or absorption of particles or electromagnetic energy, releasing energy

1. Alpha Decay: Emission of a helium nucleus (2P, 2N)

\[Z^AX \rightarrow Z-2^{A-4}Y + ^4He \]

Heat = \((M_x-M_Y-M_\alpha)c^2 \rightarrow K.E. \) of X, Y, \(\alpha \)

2. Beta Decay: Emission or absorption of electron or positron

\[Z^AX \rightarrow Z+1^AY + \beta^- + \nu \]
\[Z^AX \rightarrow Z-1^AY + \beta^+ + \nu \]
\[Z^AX + \beta^- \rightarrow Z-1^AX + \nu \]

3. Gamma Decay: Emission of a photon (de-excitation)

\[Z^AX^* \rightarrow Z^AX + \gamma \]
Decay Processes

Alpha decay

- The α decay is a nuclear transmutation: nuclei of one element change into nuclei of a lighter element.

\[
\begin{align*}
\text{Parent nucleus} & \quad \rightarrow \quad \text{Daughter nucleus} \\
^{238}_{92}\text{U} & \quad \rightarrow \quad ^{234}_{90}\text{Th} + ^{4}_{2}\text{He} \\
\text{Uranium} & \quad \rightarrow \quad \text{Thorium} + \text{He Nucleus} \\
\text{charge of } +2 & \quad \text{charge of } +2
\end{align*}
\]
Beta Decay

- During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one.

\[^0_1 n \rightarrow ^1_1 p + ^0_{-1} e \]

144 N
90 P

234 Th
90

143 N
91 P

\(\beta \)-particle

234 Pa
91

Thorium (parent nucleus) → Protactinium (daughter nucleus)
Gamma Decay

- Gamma rays are given off when an excited nucleus “falls” to a lower energy state.
- The de-excitation of nuclear states results from “jumps” made by a proton or neutron.
- The excited nuclear states may be the result of violent collision or more likely of an alpha or beta emission.

\[
\begin{align*}
\frac{12}{6} C^* \\
\rightarrow \frac{12}{6} C + \gamma_{ray}
\end{align*}
\]
<table>
<thead>
<tr>
<th>Type of Radiation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) particles</td>
<td>a sheet of paper, a few centimeters of air, or thousands of a centimeter of biological tissue</td>
</tr>
<tr>
<td>(\beta) particles</td>
<td>a thin aluminum plate or tenths of a centimeter of biological tissue</td>
</tr>
<tr>
<td>(\gamma) rays</td>
<td>several centimeters of lead or meters of concrete</td>
</tr>
</tbody>
</table>

Figure 3. Radiation travelling through human tissue

© 2006 Thomson Higher Education
Nuclear Reactions (cont.)

B. Spontaneous Decay - Exponential (Half Life)

\[N = N_0 e^{-\lambda t} \]

- Because... Rate = \(\lambda N \)
- 1 Curie = 3.7 E 10 sec\(^{-1}\) (1 g of radium)

- Half life = ln(2)/\(\lambda \) (recall rule of 70?)

- Nuclei can also be rendered unstable in nuclear reactions
C. Neutrons

• neutrons can not be accelerated, focused, etc.
• free neutrons decay (~10 min) to proton + electron
• neutrons easily pass by electron cloud and are not repelled by positively charged nucleus
• if they are traveling slowly enough, they stick; if they travel faster, they scatter
 – e.g. thermal neutrons (300 K) travel ~ 2.8 km/s
• if they are captured, they can produce an unstable isotope, which can then either DECAY or FISSION
Nuclear Fission

A. Fission and Fusion

- **Fission** - break up into 2 or more smaller pieces
- **Fusion** - combine 2 or more pieces into a bigger piece
- both involve transmutation of elements
- both can be exothermic: energy released = \(\Delta mc^2 \)
 - if \(M_{\text{big}} < \sum M_{\text{small}} \), fusion is exothermic
 - if \(M_{\text{big}} > \sum M_{\text{small}} \), fission is exothermic
- both processes occur in nature
 - fusion inside stars
 - fission e.g. OKLO
- fission of U discovered in late ‘30s
 - 1st controlled chain reaction in 1942
 - 1st uncontrolled chain reaction 1945
FUSION

FISSION

Fe

(Z=56)

Curve of Binding Energy

Binding Energy per Nucleon (MeV)

A

of Nucleons
Nuclear Fission (cont.)

B. Fission Example

\[n + ^{235}\text{U} \rightarrow ^{236}\text{U} \]

\[^{236}\text{U} \rightarrow A^* + B^* + 3n \]

A* and B* have too many neutrons to be stable; long series of beta decays to eventually become stable

- energy released as kinetic energy of products
- neutron initiates reaction, and reaction produces neutrons
- for Uranium, only slow neutrons will cause fission, but neutrons produced by fission move very fast
- need “moderator” to slow them down
- if 1 or more of these neutrons stimulates another fission, a chain reaction can result
Nuclear Fission (cont.)

- $K =$ average # of fission inducing neutrons per fission
 - water is a moderator: it slows down neutrons
 - depends on material, moderators, shape and size of “pile”, temperature, etc.
 - if $K<1$ reaction dies out
 - if $K=1$ continuous power production
 - if $K>1$ possibly destructive chain reaction
Nuclear Fission (cont.)

C. Enrichment of Fissile Material

- Natural isotope ratio: $^{238}\text{U}/^{235}\text{U} \sim 142$
 - 99.3% ^{238}U [changes very slowly over time]
 - 0.7% ^{235}U
- with water as moderator, need 3 or 4% ^{235}U
- with heavy water, we can use natural mix
- for bombs, need 90% or more ^{235}U (or Plutonium)
- how do we change the isotope ratio?
 - Diffusion (ORNL)
 - Centrifuge (LBL)
 - Laser (LANL)
 - Breeder reactor (Hanford, SRS)
 - Fuel reprocessing
\[^{238}\text{U} + n \rightarrow ^{239}\text{U} + \gamma \]
\[^{239}\text{U} \rightarrow ^{239}\text{Np} + \beta^- + \bar{\nu} \]
\[^{239}\text{Np} \rightarrow ^{239}\text{Pu} + \beta^- + \bar{\nu} \]
\[^{239}\text{Pu} \rightarrow ^{235}\text{U} + \alpha \]

238U --> 235U Enrichment in reactor

\((T_{1/2} = 23.5 \text{ min.})\)
\((T_{1/2} = 2.35 \text{ days})\)
\((T_{1/2} = 2.44 \times 10^4 \text{ years})\)

NUCLEAR POWER UNITS BY REACTOR TYPE, WORLDWIDE

<table>
<thead>
<tr>
<th>Reactor Type</th>
<th>Units (in operation)</th>
<th>Net MWe</th>
<th>Under Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurized light-water reactors (PWR)</td>
<td>243</td>
<td>214,234</td>
<td>43</td>
</tr>
<tr>
<td>Boiling light-water reactors (BWR)</td>
<td>91</td>
<td>74,941</td>
<td>8</td>
</tr>
<tr>
<td>Gas-cooled reactors, all types</td>
<td>36</td>
<td>12,239</td>
<td>0</td>
</tr>
<tr>
<td>Heavy-water reactors, all types</td>
<td>33</td>
<td>18,645</td>
<td>16</td>
</tr>
<tr>
<td>Graphite-moderated light-water reactors (LGR)</td>
<td>15</td>
<td>14,785</td>
<td>1</td>
</tr>
<tr>
<td>Liquid-metal-cooled fast breeder reactors (LMFBR)</td>
<td>3</td>
<td>928</td>
<td>4</td>
</tr>
</tbody>
</table>
Boiling Water Reactor

Steam

$P = 1000 \text{ psi}$

$T = 540^\circ \text{F}$

Turbine

Generator

Electricity

Condenser

Cold H_2O

Feedwater

Pump

Hot H_2O

Lake or cooling tower
Pressurized Water Reactor

- Reactor vessel
- Core
- Water
- Pump
- Containment
- $P = 2200 \text{ psi}$
- $T = 600^\circ \text{F}$
- Steam
- Turbine
- Generator
- Electricity
- Condenser
- Cold H_2O
- Hot H_2O
- Lake or cooling tower
- Water
- Pump