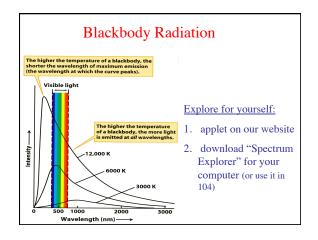
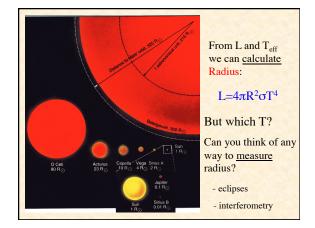
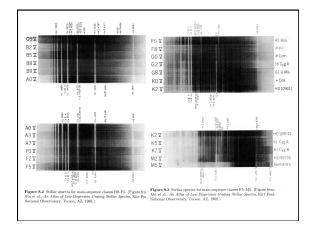
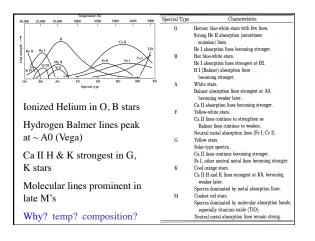
Lec #10	2: 14 SEP 11 Spectral Classification
•	LAST TIME: Color, "Continuous" Emission Spectrum
	- Colors and Color Indices
	- Blackbody Radiation
	- Effective Temperature
•	TODAY: Spectral Classification
	- Overview of Blackbody Radiation and
	Effective Temperature
	- Spectral Classification History and Procedure
	NEXT WEEK: HR Diagram
	- 2-D classification
	- Measuring Mass
	M I S DIG O SIT

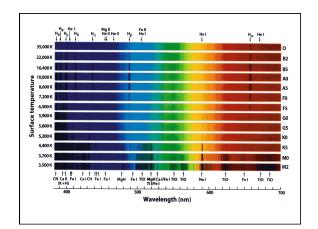
- Mass - Luminosity Relation Spectral Type

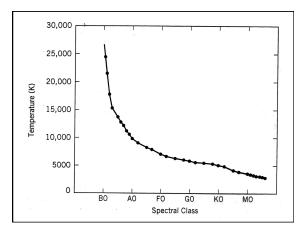

2. The Planckian Brightness Distribution

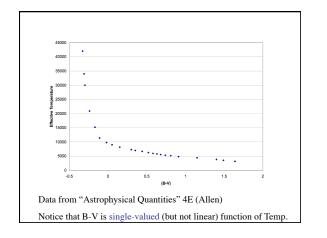

• The functional form of intensity v. wavelength exactly matches an analytic expression...


$$\begin{split} B_{\lambda}(T) &= 2hc^{2}/\lambda^{5} \ [e^{hc/\lambda KT} - 1]^{-1} \ erg/s \ cm^{-2} \ Å^{-1} \ sr^{-1} \\ \text{or...} \\ B_{\nu}(T) &= 2h\nu^{3}/c^{2} \ [e^{h\nu/KT} - 1]^{-1} \ erg/s \ cm^{-2} \ Hz^{-1} \ sr^{-1} \end{split}$$


• We'll worry more about the angular distribution later. For now, the observed flux is


 $f = \pi B \text{ erg/s cm}^{-2} \text{ Å}^{-1}$





	min	max	range
Luminosity	10-4	104	108
Radius	10-2	10 ³	105
Mass	10-1	10 ²	10 ³
Temperature	2500	25000	10 ¹
must plot	t them on a	its; T in Ke log-log plo	t
and a day of	vo put on t	he axes? w	hu?