

1) Visual Binaries

- Mass ratio given by relative semi-major axes: $m_1/m_2 = \alpha_1/\alpha_2$; where $\alpha = a/d$
- distance not required *if* you can see both stars *and* the center of mass (just use angular separation)
- if orbit in plane of sky and distance is known, can set up 1-body problem with reduced mass $\mu = m_1 m_2/(m_1 + m_2)$ orbiting immobile total mass
 - $a = a_1 + a_2$
 - Kepler's 3rd law gives $m_1 + m_2$
 - combine mass ratio and mass sum ->
 - solve for $m_1 \& m_2$ individually (2 eq., 2 unknowns)

	min	max	range
Luminosity	10-4	104	108
Radius	10-2	10 ³	10 ⁵
Mass	10-1	10 ²	10 ³
Temperature	2500	25000	10 ¹