Lec #19: 5 OCT 2011

TODAY: Line Positions and Strengths

- Balmer Formula
- Bohr Atom
- Hydrogenic Ions
- Transition Rates and Line Strengths

NEXT: Atomic Physics. II.

- Modifications required for >1 electron
- Atomic Structure, Selection Rules, Atomic "Terms"

The Bohr Atom (Hydrogen)

- Analog w/ gravity
 - $-1/r^2$ central force
 - angular momentum = constant
 - but not just any constant; orbits "quantitized"
 - so we don't get Kepler's Laws
 - still satisfy "Virial Theorum" U=-2K
 - $-L = \mu vr = nh/2\pi = n(h-bar)$; n=positive integer
 - 2-body --> 1-body problem (reduced mass, μ)
 - circular orbits (centripital force = electric force)

- $\mu = m_e m_p / (m_e + m_p) = 0.9994556 m_e (m_p = 1836m_e)$
- circular orbits: $\mu v^2/r = e^2/r^2$
- KE =1/2 μv^2 PE =- e^2/r
- $E = KE + PE = -1/2 e^{2}/r$
- use $L=\mu vr=nh/2\pi$ in place of μv to get...
- $r_n = \{h_b 2/\mu e^2\} n^2 = a_0 n^2$; $a_0 = 0.529 \text{ Å}$
- so $r = a_0 4a_0 9a_0 ...$

- so $r = a_0 4a_0 9a_0 ...$
- Plug this into Energy equation to get...
- $E_n = -1/2 e^2/r_n = -13.6 eV 1/n^2$
- $E_n = -13.6, -3.4, -1.5, -0.9, \dots eV$
- $E_{\gamma} = E_U E_L = 10.2, 1.9, 0.6, \dots eV$
- Turn this into wavelength with $E=hc/\lambda$...
- $1/\lambda = R_{\rm H} \{ 1/n_{\rm L}^2 1/n_{\rm U}^2 \}$
 - where $R_{\rm H} = \mu e^4 / 4\pi h_b^3 c = 109,677.5 \text{ cm}^{-1}$

DeBroglie Wavelength

- Wave-Particle Duality isn't just for photons any more!
- Recall that photons have *Energy* E=hv=hc/λ and *Momentum* p= hv/c= h/λ
- They also carry Angular Momentum $h/2\pi$ (h_b)
- Suppose $\lambda_D = h/p$ for everything!
- For an n=1 electron, $\lambda_D = 3.3 \text{ Å} = 2\pi a_0$

Important QM Fundamentals

- Classical physics breaks down on the size scale of atoms, but the following are still conserved
 - mass-energy
 - momentum
 - angular momentum
 - charge
- Heisenberg Uncertainty Principle
 - h-bar serves as a quantum of "action" (E*t or p*x)
 - $\ \Delta p \Delta x \sim h_b \qquad \text{and} \qquad \Delta E \Delta t \sim h_b$
 - for an atom $\Delta x \sim \lambda_D$ --> electron "clouds"

What Can We Tell From Line Position?

- What elements are present (but relative strengths don't mean much, and absence of evidence is not evidence of absence).
- Doppler Shifts: systematic motion in the line of sight
- Doublets and Triplets: spin-orbit coupling; isotopic shifts; magnetic field
- We'll discover some more things later. But for now...

What Can We Tell From Line Strength?