Lec \#2: 29 AUG 11 Celestial Geography

- TODAY: "Celestial Geography"
- Describing "location" and "distance" on the sky
- Spherical Geometry
- Celestial Coordinate Systems
- Announcement: go.cofc.edu/SONG4/
- Next Week:
- Celestial Time Systems
- Daily, Annual, and Long-Term Motion of the Sky
- Cataloging Stellar Properties. I. Position

The Sky (viewed from Earth)

- The Sky APPEARS to us as if all the "celestial" bodies (Sun, Moon, planets, stars, etc.) are on the inside of a sphere (2-Dimensional surface)
- Really, they are distributed in a 3-Dimensional space - demo: Orion in 3-D
- We see one half of this sphere at any given time
- The Earth blocks out the other half
- The Sky is dark about half the time, when the Sun is "below" the HORIZON
- How does the sky appear when viewed from space?

How Do We Know the Earth is Spherical?

- Columbus?
- Shadows of Earth on Moon?

How Do We Know the Earth is Spherical?

- Can we demonstrate it?
- If Earth were flat (but stars still a long ways away), everyone would see same sky. Star at zenith would always be at zenith.
- Azimuth and Elevation would be same for everyone.
- But it's NOT the same for everyone! This has been known for thousands of years!

Celestial Geography

- How can we describe LOCATION on the sky
- How can we describe DISTANCE between objects on the sky?
- How can we describe SIZE of objects on the sky?

[^0]Ancient astronomers determined that the Earth is Spherical (and they could measure its size)

- In the town of Syene, the Sun shone directly down a vertical shafts on the summer solstice
- In Alexandria, the position of the sun was 7° away from vertical ($\sim 1 / 50$ th of a circle)
- Around 200 B.C., the Greek astronomer Eratosthenes used 50x astronomer Eratosthenes used 50x and Syrene to get a circumference of the eath of about 42000 km (the actual is about 40000 kilometers)

Location in the Sky. I. "Local"

- "Alt-Azimuth" Coordinate System
- depends on your location on Earth (different positions on Earth see same thing but at different altitudes or azimuths and at different times)
- AZIMUTH (aka "heading" or "bearing")
- angle measured along the horizon circle
- same as compass heading
- measured from north toward the East
- examples: North $=0^{\circ}$, East $=90^{\circ}$, South $=180^{\circ}$
- ALTITUDE (aka "Elevation")
- angle measured up from horizon (0 to 90 degrees)

[^0]: Pointer stars in Big Dipper about 5° apart
 [so you could fit 10 Full Moons between them!]

