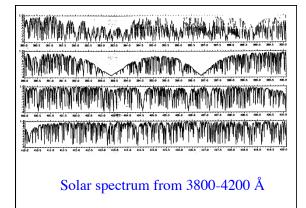
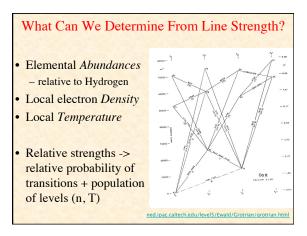

Lec #21: 10 OCT 11 Spectral Line Strengths, 4.3.5, 4.4 Last Time: What Transitions Are Possible? <u>Today: What Can We Determine From Line Strength?</u> • measuring line strength • luminosity in a line; number of absorbers in beam • abundance, temperature, and density

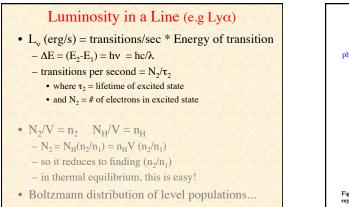
Wednesday: What Can We Determine From Line Profiles? Iifetime of level

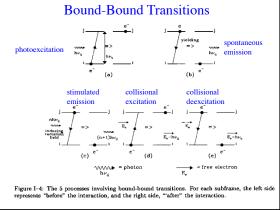
- physical conditions (e.g. local gravity)
- systematic and random motions
- number of absorbers


Spectroscopic "Terms" and Terminology


- "term" $^{(2S+1)}L_J$
 - $-S = \sum m_s L = \sum l$ and J=L+S (vector sums)
 - (2S+1) gives "multiplicity of state"
 - use same letters for L (but capitalized: SPDF)
- L-S (spin-spin + orbit-orbit coupling) selection rules:
 - $-\Delta S = 0$
 - $-\Delta L = -1, 0, 1$
- $\Delta J = -1, 0, 1$ (but not J=0 to J=0)
- in heavier atoms (Z>30), jj coupling (spin-orbit)




- <u>Resonance Line</u> (e.g. Ca II λ3934): "allowed" transitions involving ground state
- <u>Semi-Forbidden Line</u> (e.g. C II] λ 2325): Δ S or Δ L violated
- <u>Forbidden Line</u> (e.g. [O III] λ 5006): Δ S and Δ L violated
- *Metastable* state: no "allowed" connection to ground --> very long lifetimes (recall $\Delta E \Delta t \sim h_b$)


- Intersystem (or Intercombination): transitions within subshell; never "allowed", but often diagnostic (e.g. O III] λ5006 - nebular line)
- *Fine Structure*: transitions within ground state multiplet (always forbidden)
- *Hyperfine* lines: electron spin flip (e.g. 21 cm line)
- [note: vacuum v. air wavelengths]
- Grotrian diagrams...

Bound-Bound Rate Coefficients (see 4.3.5 in LeBlanc)

- Excitation
 - $-B_{12}$ (photoexcitation)
 - $-C_{12}$ (collisional excitation)
- De-Excitation
 - $-A_{21}$ (spontaneous emission) s⁻¹
 - $-B_{21}$ (stimulated emission)
 - $-C_{21}$ (collisional de-excitation)
- *B* depends on mean intensity of radiation field, J_v
- *C* depends on density of colliders (mostly n_e) and kinetic temperature