Lec #24: 19 Oct 2011

Chapters 3 & 4

This Week: Radiative Transfer. I.

- Specific Intensity, I,
- Emission and Absorption coefficients
- Radiative Transfer Equation
- Optical depth
- Source function
- Opacity and Emissivity

Next Week: Stellar Atmosphere Models

Combined N+C+D Profile

• "Voigt" profile

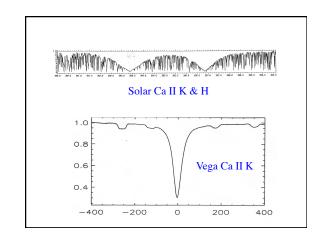
$$\begin{split} \phi^{V}(\nu) \; d\nu \sim \pi^{-3/2} \; \{a/\,\Delta^{\rm D}\} \; \int & e^{-t^2/[(\nu-\nu_o)/\Delta^{\rm D} - \; t)^2 \; + \; a^2] \; dt \\ & a = & (\Delta^{\rm N} + \Delta^{\rm C})/\Delta^{\rm D} \end{split}$$

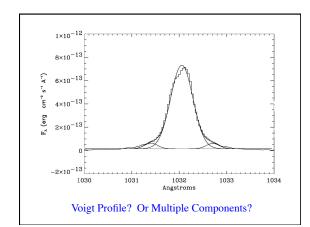
- − a is Voigt parameter and t is "dummy variable"
- $-a \Rightarrow 0$ for gaussian $a \Rightarrow \infty$ for lorentzian
- in astrophysics, a ranges from 10⁻⁴ to 10⁻¹
- in terms of $x=(v-v_0)/\Delta^D$

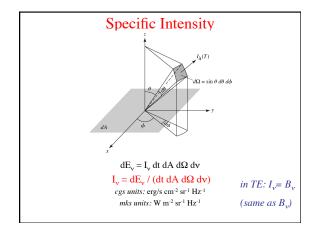
$$\begin{split} & \phi^D(x) \ dx \sim \pi^{-1/2} \ e^{-x^2} \ dx \\ & \phi^V(x) \ dx \sim \pi^{-3/2} \ a \ \int \! e^{-t^2} / [(x\!-\!t)^2 \!-\!t^2) + a] \ dt \end{split}$$

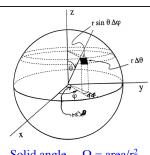
Deconvolution of Intrinsic Profile

- That's not all, other things affect profile:
 - Zeeman broadening, hyperfine structure, "microturbulence"
 - instrumental resolution ("line spread function")
- How do these all combine to produce what we observe?
 - "CONVOLUTION": multiply the Fourier
 Transforms of all the φ's (including instrumental) then do an inverse transform to get the combined φ(v)
 - "DECONVOLUTION" : remove the effects of the φ 's that we think we understand









- Solid angle $\Omega = \text{area/r}^2$
- e.g. complete sphere = $4\pi r^2/r^2 = 4\pi$ "steradians" (sr)
- $-dA = (r d\theta) * (r \sin\theta d\phi) = r^2 \sin\theta d\theta d\phi$
- $-d\Omega = dA/r^2 = \sin\theta \ d\theta \ d\phi$

Mean Intensity

- I_v is the "monchromatic" intensity
- I_v is constant "along a ray" through vacuum
- Total intensity is $I = \int I_v dv$ over all frequencies
- · "Mean Intensity"

$$J_v = (1/4\pi) \int I_v d\Omega$$

- average over all angles, not total over all angles
- same units as I_v
- we saw J_v in the rate equations for B-B transitions
- $-J_v = I_v$ if I_v is isotropic (B_v always isotropic)

The Radiative Transfer Equation

• EMISSION

- -"volume emissivity" j_v (erg/s cm⁻³ sr⁻¹ Hz⁻¹)
 - $dE_v = j_v dV d\Omega dt dv$

$$dI_v/ds = j_v$$

(s is physical path through medium)

- "emissivity per unit mass" ε_ν (erg/s g⁻¹ sr⁻¹ Hz⁻¹)
 - $dE_v = \rho \varepsilon_v dV d\Omega dt dv$

$$dI_v/ds = \rho \varepsilon_v$$

- $-j_{v}$ and ε_{v} are not necessarily independent of I_{v}
 - but we can alter our definition to make it so ...

ABSORPTION

-"absorption coefficient" α, (cm⁻¹)

$$dI_v/ds = -\alpha_v I_v$$

-"opacity" K_v (cm² g⁻¹)

$$dI_v/ds = -\rho \kappa_v I_v$$

-cross sections... σ_v (cm²) & n (cm⁻³)

$$dI_v/ds = -\sigma_v n I_v$$

SCATTERING

- can either add or remove photons from beam, but they are still there in the gas (just a net change of direction)
- might involve absorption and re-emission (in a different direction)
- proportional to intensity, so if we include scattering in absorption coefficient, it can be negative

Equation of Radiative Transfer

$$dI_{v}/ds = j_{v} - \alpha_{v} I_{v}$$

$$dI_{v}/ds = -\rho(\epsilon_{v} - \kappa_{v}I_{v})$$

- this is the simplest (and least useful) form
- what does it mean?
- "opacity" v. absorption coefficient

- Optical depth (dimensionless) $d\tau_v = \alpha_v ds \qquad \tau_v = \int_0^s \alpha_v(s') ds'$ pure absorption... $I_v(s) = I_v(s_0) e^{-\tau_v}$
 - physical, but not geometric
 - frequency dependent
- Source Function, $S_v = j_v / \alpha_v$
 - same units as I_v
 - often simpler and more physical to deal with net "source" rather than emission and absorption separately

Source Function

- with $d\tau_v = \alpha_v ds$ and $S_v = j_v / \alpha_v$
- RT Eq (dI_v/ds = j_v α_v I_v) can be written as:

$$dI_v/d\tau_v = -I_v + S_v$$

- I approaches S
- $-S \longrightarrow B_{y}$ ("thermal emission")
- determining S is equivalent to solving RT eq
- but it can involve integrals, differentials
- and lots of physics

- Some very simple solutions.
 - 1. No absorption $(\alpha_v=0)$

 $dI_v/ds = j_v$

 $I_{y}(s) = I_{y}(s_{0}) + \int_{0}^{s} j_{y}(s')ds'$

2. No emission $(j_y=0)$

 $dI_v/ds = -\alpha_v I_v$

 $I_{\nu}(s) = I_{\nu}(s_0) \; e^{-\int \alpha_{\nu}(s') ds'} \qquad (\text{\intfrom 0 to s$})$

Optical Depth

• τ_v (dimensionless)

$$d\tau_v = \alpha_v ds$$
 $\tau_v = \int_0^s \alpha_v(s') ds'$
pure absorption... $I_v(s) = I_v(s_0) e^{\tau_v}$

- physical, but not geometric
- frequency dependent
- What value of τ_v yields a 50:50 probability of escape?
 - $-e^{-2/3} = 1/2 = > \tau = 2/3$ plays a special role
- optically "thin"; optically "thick"
- Limb darkening (examples)
- Profile maps different heights, therefore temperatures, in an atmosphere (examples)

