



These measured properties cover a large rang
--

	min	max	range
Luminosity	10-4	104	108
Radius	10-2	10 ³	105
Mass	10-1	10 ²	10 ³
Temperature	2500	25000	10 ¹

(L, R, M in Solar Units; T in Kelvin)

 $L = 4\pi R^2 \sigma T^4$

Equations of Stellar Structure

Strategy: simultaneously solve 4 or more *one-dimensional* differential equations to yield *global* parameters (L, M, T_{eff}, R)

- 1. Pressure Balance (<u>Hydrostatic Equilibrium</u>)
 - $dP/dr = -G M_r \rho(r) / r^2$
 - neglect flows; magnetic "pressure"
- 2. Conservation of Mass (Continuity Equation) $- dM_{r}/dr = 4\pi r^{2} \rho(r)$
- 3. Conservation of Energy
 - $dL_r/dr = 4\pi r^2 \rho(r) \epsilon(r)$
 - ε contains all net photon generation (~0 outside core)

4. Energy Transport

- Radiative: $dT/dr = -3/4ac \kappa \rho(r)/T^3 L_r/4\pi r^2$
- Convective: $dT/dr = g(r)/c_p$ (adiabatic)
- Conductive: not usually important for interiors ?!

• Equation(s) of State

- P, κ , ϵ as functions of ρ , T, composition
- e.g. Ideal Gas P = nkT
- ideal gas doesn't always work
- will deal with Fermi-Dirac and Bose-Einstein

Boundary Conditions

- r -> 0 $M_r \text{ and } L_r -> 0$
- $r \dashrightarrow \infty \qquad T, P, \rho \dashrightarrow 0$
- $r \rightarrow R$ $r, T, M_r, L_r \rightarrow R, T_{eff}, M, L$

- Result:
 - T(r) and $\rho(r)$
 - integrate $\rho(r)$ to get mass
 - boundary conditions to get T_{eff}, Radius, etc.
 - integrate L_r to get total Luminosity
 - match observed global properties
- Next Step: (the Sun and main-sequence stars)
 - test with Solar Models and observations
 - see how these properties change with time"Stellar Evolution" (explain HR diagram)
- Caveats: (real stars; more interesting stars)
 - winds, rotation, magnetic fields, binary stars
 more complicated equations of state, better convection models, etc.