Lec \#3: 29 AUG 11 Spherical Coordinate Systems; Diurnal Motion

- LAST TIME: Celestial Geography
- Spherical Geometry
- Altitude \& Azimuth
- TODAY: Daily Motion of the Sky
- Latitude and Longitude
- Right Ascension and Declination
- Annual Motion of the Sky; Apparent Solar Motion
- WEDNESDAY: Longer Term Variations \& Time
- Celestial Measurements of "Time"
- Long-Term Variations: Parallax and Nutation
- Other Factors Affecting Position and Time Measurements

Location in the Sky. II. "Geographic"

- CONSTELLATIONS - names given to patterns of stars in the sky
- now defined in terms of accepted boundaries
- how did they get their names?
- why constellations aren't a good way to describe location (at least not accurately)
- how are constellations used these days?

Location in the Sky. III. "Global"

1. On Earth....

- latitude: angle from equator (+ = north)
- longitude: angle from prime meridian (east or west)

Analog: azimuth and elevation viewed from center of Earth

$$
\text { Charleston: } 32^{\circ} 46^{\prime} 35^{\prime \prime} \text { North \& } 79^{\circ} 55^{\prime} 53^{\prime \prime} \text { West }
$$

- How do we put a similar grid on the sky?
- We first need a POLE and EQUATOR .

Modern Constellations

The entire sky is divided into 88 constellations; Internationally agreed upon names and boundaries
Boundary lines drawn on the sky so that all stars are in only one constellation

Different shapes and sizes; fit together like a jigsaw puzzle
Many star names come from the constellation they are in (e.g. Alpha Centauri)

Stars in constellation only appear to be close together, because they are in nearly the same direction as seen from Earth

2. On the Sky...

- RIGHT ASCENSION. Celestial longitude. Lines of constant RA perpendicular to celestial equator, and all pass through celestial poles. Measured in HOURS ($0-24$; 24 hours=360 degrees; so 1 hour = 15 degrees). [which direction? from where?]
- DECLINATION. Celestial latitude. Lines of constant DEC parallel to equator. Measured north $(+)$ or south $(-)$ of celestial equator, like latitude on Earth.

Rotation of the Earth

- Spherical Earth "rotates" once in 24 hours (it's actually $23^{\mathrm{h}} 56^{\mathrm{m}}$)
- Earth's rotation is from west to east (counterclockwise viewed from above north pole)
- Sky appears to rotate east to west once in 24 hours (opposite sense of Earth's rotation)
- "Axis" of rotation through north and south poles
- projects to north celestial pole (NCP) and south celestial pole (SCP)
- Equatorial plane perpendicular to axis
- cuts through our equator
- projects to circle on the sky called the celestial equator (CE)

Apparent Daily Motion of the Sky

- path across the sky, and how long things are "up" depends on:
- your latitude on Earth - object's declination
- some examples...

The Sky Viewed from the North Pole

- everything is up for 24 hours!
- everything moves in counterclockwise circle (looking up)
- motion is parallel to ground; elevation angle never changes

- NCP at zenith
- CE along horizon
- always see the same stars: never see any stars in the sky's southern hemisphere
(b) At the north pole

The Sky Viewed from the Equator

- everything is up for 12 hours!
- everything moves east to west in straight lines
- rise and set perpendicular to ground (it gets dark in a hurry!)

- NCP at horizon
- CE overhead: from east through zenith to west
- see all stars in BOTH hemispheres!

The Sky Viewed from Charleston

- motion depends on where in sky you are looking
- some apparent paths are east-->west arcs
- some apparent paths are counterclockwise circles
- time from rise to set depends on declination:
$0^{\text {h }: ~<-57 o ; ~}<12^{\text {h }}:-57$ to $0^{\circ} ; \quad>12^{\text {h }}: 0-57^{\circ} ; \quad 24^{\mathrm{h}}>57^{\circ}$

- NCP elevation $=33^{\circ}$
- CE from east through meridian elevated by 57° to west
- see all stars north of declination -57 ${ }^{\circ}$
(a) At middle northern latitudes

