

- bubble expands without exchanging energy with
- if density inside bubble drops off faster with height than density in surrounding
- $d \ln(P) / d \ln(T) > 2.5$ then stable against convection

Equations of State

- need Equation of State
- e.g. "Ideal Gas"
 - PV=NkT P=(N/V)kT P=nkT
 - alternative form involving $\rho = n * \underline{m}$
 - $-\underline{m}$ is average mass of a gas particle
- "mean molecular weight" $\mu = \underline{m}/m_{H}$
 - $-\mu$ is temperature and composition dependent $-P_r = \rho_r k T_r / \mu_r m_H$
 - relates pressure with Temperature and composition at each radius

- Mass Fractions rather than numbers...
 X=M_H/M Y=M_{He}/M Z=M_{metal}/M X+Y+Z=1
 e.g. neutral 1/μ = X+(1/4)Y+<1/A>Z
 solar: X=.70, Y=.28, Z=.02, A~15.5 so μ~1.3
 e.g. 100% ionized 1/μ = 2X+(3/4)Y+(1/2)Z
 solar: X=.70, Y=.28, Z=.02, A~15.5 so μ~0.62
- Radiation Pressure $P_{rad} = (1/3)aT^4$
- Total Pressure = $P_{gas} + P_{rad} + ...$

