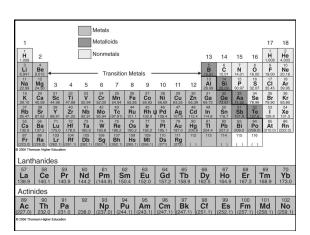
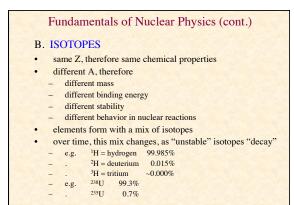


Energy Generation via Grav. Contraction

- Luminosity = energy generation (~M^{3.5})
- contraction (V decreases; P, T increase) -> gas couples to radiation; energy radiates out
- $\Delta E \sim 0.3 \text{ GM}^2/\text{R} (1/\text{R}_2 1/\text{R}_1)$
- let $R_1 = \infty$, $R_2 = R_{sun} \rightarrow \Delta E \sim 10^{48}$ erg
- L t_{KH} = ΔE -> t_{KH} ~ 10⁷ years
 this would only keep the Sun shining for 10 million years, but we know it's older than that!

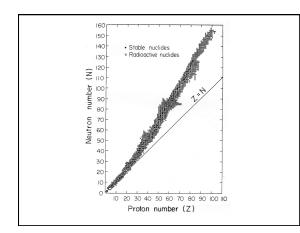

Chemical or Nuclear Energy Generation?


- energy available in a chemical reaction is roughly the binding energy of the atoms or molecules, which is typically 1-50 eV
- multiply that by the number of available molecules, and you get a timescale longer than t_{KH} but still much shorter than the age of the Sun
- binding energy of nuclei is in the MeV-TeV range; multiply that by the number of nuclei, and there's plenty of available energy to keep the Sun shining for 10 billion years

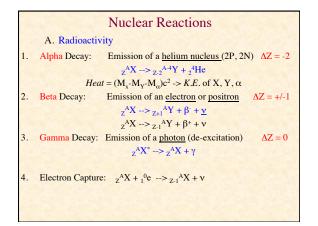
Mass	Time
(M _☉)	(years)
0.1	6 × 10 ¹²
0.5	7×10^{10}
1.0	1×10^{10}
1.25	4×10^{9}
1.5	2×10^{9}
3.0	2×10^{8}
5.0	7 × 10 ⁷
9.0	2×10^{7}
15	1×10^{7}
25	6×10^{6}

Fundamentals of Nuclear Physics

- 1. Mass of free particles (E=mc²)
 - proton = $1.6726E-27 \text{ kg} = 938.3 \text{ MeV/c}^2$
 - neutron = $1.6749E-27 \text{ kg} = 939.6 \text{ MeV/c}^2$
 - electron = 9.1094E- $31 \text{ kg} = 0.511 \text{ MeV/c}^2$
- 2. Binding Energy and Mass of atom $< m_p n_p + m_n n_n + m_e n_e$
 - $\Delta mc^2 = binding energy$
- most of this (MeV's) is in nucleus
 Nuclear Structure (proton+neutron)
 - EM repulsion of protons: neutron immune to EM force
 - force stronger than EM operating over tiny distances
 - more protons -> more EM; more neutrons -> some "shielding"
 - Atomic Number: Z = # of protons
 - Nucleon Number: A = # of nucleons (protons + neutrons)
 - $_{Z}^{AX}$; X is chemical symbol e.g. $_{92}^{238}$ U (or just 238 U)



Fundamentals of Nuclear Physics (cont.)


C. STABILITY OF ISOTOPES

- certain combinations of neutron # and proton # hold together for a long time
- others transmute themselves to a different element by ...
- radioactive decay
- nuclear fission
- electron capture
- adding neutrons to stable nucleus generally makes it unstable
- ~400 stable nuclei known; all have $Z \le 83$ (Bismuth)
- generally stable if Z or N = 2, 8, 20, 28, 50, 82, 126
 - nuclear "shell" structure analogous to atomic shells

- Initial and final states have different binding energies, different masses ($\Delta E = \Delta mc^2$)
- Where does energy "go"?
- We are interested in "exothermic" reactions...
 - A. Radioactive Decay
 - B. Nuclear Fission
 - C. Nuclear Fusion

