






Evolution of Very Low-Mass Stars

- Brown Dwarfs (10 $M_J < M_{BD} < 0.08 M_{\odot}$)
 - fusion never ignites
 - Kelvin-Helmholz contraction/cooling
 - fully convective
 - molecular opacities (even deep in atmosphere)
 - end life as "black dwarf"?
- M Dwarfs $(M > 0.08 M_{\odot})$
 - PP chain
 - fully convective
 - gradually He enriched; never hot enough to ignite
 - contracts to He-rich white dwarf

Evolution of 1 M_{\odot} Stars

- Radiative core; little or no mixing
 H->He; molecular weight goes up
- Sun now ~40:60 H:He in the core
- He ash gravitationally settles in core; not yet hot enough to "ignite"
- core contracts, heats up, increases PP and CNO
 luminosity, temp, radius gradually
- increases

 once X < 1 or 2% (~90% of total lifetime), PP and CNO cannot continue
- core goes out of HSE and TE and contracts
- not hot enough for He fusion; H burns in "shell"

