

no significant mass change during main sequence lifetime

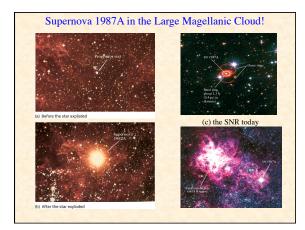
significant mass can be lost during red giant phases

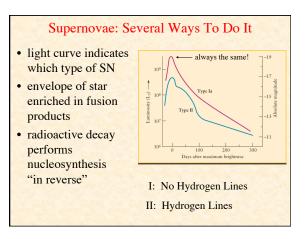
corpse type (and mass) related to main-sequence mass and to how much mass was lost in red giant phase

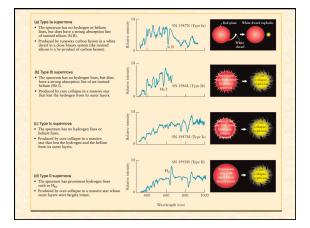
A Closer Look at Pressure

- Neutral gas. Pressure from physical collisions between particles.
- Plasma (ionized gas). Additional pressure from "long-range" collisions between charged particles.
- Radiation pressure. Photons have momentum and exert pressure when absorbed and emitted.
- Atomic and Molecular bonds can push back (e.g. solids can resist gravity)
- Electron degeneracy pressure
- Neutrons can pack "shoulder to shoulder"
- What happens when they "break"? Anything else?

Stellar Corpses


- < 1.4 M_{\odot} White Dwarf - progenitor: < 8 M_{\odot} (winds & planetary nebula)
- 1.4 3 M_o Neutron Star
 - progenitor: $8 25 M_{\odot}$ (winds & supernova ejecta)
- > 3 Msun Black Hole - progenitor: > 25 M_{\odot} (winds & supernova ejecta)
- We can see white dwarfs, but ...
- can we "see" neutron stars and black holes?


What Causes the Star to Explode?


- fusion shells --> Iron core
 - (1 day): core Silicon burning -> Iron
 - Iron will not produce energy by fusion or fission
- (1/4 second): "core collapse"
 - gamma rays disintigrate iron into protons, neutrons, electrons
 - electrons and protons smashed into neutrons (lots of neutrinos emitted)
 - nothing left but tightly-packed neutrons, much more dense than even a white dwarf
- (milliseconds): "core bounce" + neutrinos ==>
- (~10 seconds): SUPERNOVA

Supernova and Nucleosynthesis

- Outward propogating pressure wave compresses, shocks, heats star's outer shell. It also drives envelope outwards, reversing collapse
- AHBL:
 - more light produced than Sun produces throughout its 10 billion year main sequence lifetime!
 - as bright as entire host galaxy!
 - energy in neutrinos 100x more than in light!
- Rapid burst of nucleosynthesis
 - drives more fusion reactions in envelope
 neutron capture (R process) builds up heavier nuclei
- Brightens, expands, then fades
 - heavier nuclei --> lighter nuclei by radioactive decay
 - also heats expanding envelope, keeping it bright

