Lec \#4: 31 August 2011
 Apparent Diurnal and Annual Motion of Sky

- LAST TIME: RA \& Dec; Daily Motion of the Sky
- Spherical Earth
- Latitude and Longitude
- Right Ascension and Declination
- TODAY: Annual and Long-Term Motions of Sky
- Daily Motion of Sky from any latitude on Earth
- Apparent Annual Motion of Sun and Nighttime Sky
- Putting it all together
- Long-Term Variations: Parallax, ...
- FRIDAY: Practice, Review, Digest Coordinate Systems
- NEXT Week: Cataloging Stellar Properties. I.
- how do we measure position accurately/precisely? - what can we learn from it?

The Sky Viewed from Charleston

- motion depends on where in sky you are looking
- some apparent paths are east-->west arcs
- some apparent paths are counterclockwise circles
- time from rise to set depends on declination:
$0^{\text {h. }}<-57^{\circ} ; \quad<12^{\mathrm{h}}:-57$ to $0^{\circ} ; \quad>12^{\mathrm{h}}: 0-57^{\circ} ; \quad 24^{\mathrm{h}}>57^{\circ}$

- NCP elevation $=33^{\circ}$
- CE from east through meridian elevated by 57° to west
- see all stars north of declination -57
(a) At middle northern latitudes

- all stars move in ccw circles around NCP
- stars with declination more than 90 minus your latitude (57 to 90 degrees for Charleston) are "CIRCUMPOLAR"
- for stars south of this, we only see a portion of their circular path, so they appear to move in an arc
- notice that stars farther from pole move farther in same amount of time

The Sky From Different Places on Earth

- everyone on same longitude sees same "time" (i.e. Sun same distance east or west of meridian)
- everyone on same latitude sees the same part of the sky (e.g. 33° north latitude sees from -57° to $+90^{\circ}$ of declination) at the same local time, but local time depends on longitude
- e.g., at 11 PM Eastern Time in Washington, DC you see the same thing as someone in Denver, CO will see at 11 PM Mountain time (i.e. 2 hours later)
- different latitudes see different parts of the sky, or the same things but at different altitudes at the same time

Local Solar Time

- when Sun is "on" the meridian, we call it "noon"
- one rotation (one day) corresponds to time it takes Sun to go all the way around and appear again on the meridian
- altitude of Sun increases from sunrise to noon (AM) and decreases from noon to sunset (PM)
- midnight corresponds to Sun on the meridian on the other side of the Earth ($1 / 2$ rotation or 12 hours after noon)
- in astronomy, we use local solar time, but it's not very practical for society...

Solar v. Civil Time

- Sun "on" meridian at local solar noon
- only one longitude on Earth has solar noon at any given instant
- It would get very confusing if everybody had different clocks, but
- it would be just as confusing if we all used the same time: it could be dark at "noon"!!
- but astronomers, pilots, etc. use "Universal Time"
- So we split the difference and have 24 time zones, each about 15° wide ($360^{\circ} / 24 \mathrm{~h}=15^{\circ} / \mathrm{h}$)
- Sun (and stars) move 15° each hour $=1$ hour of RA
- "Civil Time" = "Solar Time" $\pm 1 / 2$ hour

Coordinate Systems \& Diurnal Motion

- Review:
- Altitude, Azimuth, Zenith, Nadir, Meridian
- Right Ascension, Declination
- How are all of these measured? Units?
- Apparent motion on sky depends on (1) object's declination and (2) your latitude
- Transit Altitude --> Declination
- how do we use transits to measure RA?
- Thought experiment: Transit Altitude(s) of a Circumpolar Star
- upper and lower culmination
- can find meridian, NCP, equator, declination, latitude

Apparent Annual Cycle of the Sun

- Sun appears to go around us once per day, but it also appears to go around us once per year
- Over course of year, Sun's apparent path on the sky is called the ECLIPTIC
- Ecliptic passes through 12 constellations of the ZODIAC; multiple meanings of "ecliptic"
- Sun moves 360 degrees along the ecliptic in 365 days; $\approx 1 \% /$ day; $\approx 30 \%$ month; ≈ 2 hours of rotational motion (at $\left.15^{\circ} / \mathrm{h}\right) \approx 4 \mathrm{~m}$ of time
- which direction? what can you infer?

The Sun's Motion Viewed From Charleston

- June: rise north of east; $57+23.5=80.5$ degrees elevation on meridian at noon; set north of west >12 hours later
- December: rise south of east; 57-23.5=33.5 degrees elevation on meridian at noon; set south of west after < 12 hours
- note: difference is 47°; no matter where you are
- March or September: rise exactly east; 57° above horizon on meridian at noon; set exactly west after 12 hours

Sun's Apparent Annual Motion

- Even though Sun's motion around us is East->West, it appears to move Eastward w.r.t. the stars. $\sim 1^{\circ}$ or $4 \mathrm{~min} /$ day [demo]
- Stars rise $\sim 4 \mathrm{~min}$ earlier each day ($\sim 2 \mathrm{~h} /$ month) [solar/civil time]
- Sun's apparent motion along ecliptic, which is tipped by 23.5° w.r.t. celestial equator, and velocity is not constant [analema:]
- Sun north of celestial equator March -> Sep - day > 12 h
- meridian altitude $>57^{\circ}$ (from Charleston)
- Sun south of celestial equator Sep $->$ Mar - day < 12 h
- meridian altitude $<57^{\circ}$ (from Charleston)
- Tropics: Sun at Zenith at least 1 day each year
- Arctic: Sun never rises at least 1 day each year

