Lec #40: 30 Nov 11

Chapter 2

TODAY: STAR FORMATION

- I. Overview of Star Formation Process
- II. Evolution Onto the Main Sequence

Monday: Wrap Up

Stability Against Collapse

- Gravitationally bound: satisfies Virial Theorem 2 * KE = -PE
- PE ~ -0.6 GM_c²/R_c
- KE ~ 3/2 NkT ; N=M_c/ μ m_H
- if T<-U/2, collapse; T>-U/2, expand
- Unstable against collapse if

 $3M_ckT/\mu m_H < 0.6 GM_c^2/R_c$

- $R_c = (3M_c/4\pi\rho)^{1/3}$ if ρ is constant
- with this, we can recast the condition as...

- minimum mass to collapse (Jeans Mass) $M_c > M_1 \sim (5kT/G\mu m_H)^{3/2} (3/4\pi\rho)^{1/2}$
- minimum radius to collapse (*Jeans Radius*) $R_c > R_J \sim (15kT/4\pi G\mu m_H \rho)^{1/2}$
- but clouds must initially have expanded or contracted until they were stable, so...
- 1. what "triggers" the collapse beyond this point?
- 2. what permits them to keep collapsing (rather than just becoming stable at a smaller radius)?
- 3. what stops the collapse?

Fragmentation

- most molecular clouds are >> 1 solar mass
- if collapse were the whole story, all stars would be huge
- but most are less massive than the Sun
- fragmentation naturally occurs in collapsing cloud, because as density increases, Jeans length and Jeans mass decrease, so localized regions become unstable
- heirarchical process, but ...
- 1. What stops the fragmentation?
- 2. Why are there any stars at all?

The Role of Dust

- gravitational potential energy must be radiated away, or else it will go into kinetic energy (gas pressure), which will stop the free fall
- must radiate to stay "isothermal"
- at cold temperatures in these clouds, hydrogen and helium are very poor radiators
- dust grains must radiate thermally to keep collapse going
- dust also provides site for formation of complex molecules
- eventually, dust is the first step in accretion

Other Considerations

- Angular Momentum
 - collapsing cloud preserves angular momentum
 - inevitably leads to formation of DISKS
 - stars must be born spinning very rapidly
 - maybe in excess of "break up" velocity
 - most spin slowly now
 - so something must slow them down
- Magnetic field
 - hard to collapse charged particles perpendicular to field lines
 - galactic magnetic field must be overcome
 - but not totally; young stars have strong magnetic field

Pre-Main-Sequence Evolution

- Protostar = self-gravitating hot ball of gas, continuously being fed by accreting matter
- At first: no internal nuclear heat production
- Star cools by radiation: - Kelvin-Helmholz time scale
- Star contracts, central density and temperature increases (!)
- Deuterium ignites as soon as $T_c > 1 \times 10^6 \text{ K}$
 - Thermostat: too hot: star swells, T_c goes down, and deuterium burning slows
- Star becomes fully convective

Stellar radius inflates: can reach 3...5 R_o.

- (We are now in the T-Tauri star phase)
- Star contracts slowly
 - with constant temperature for low mass stars, i.e. they move vertically downward in the HR diagram
- T_c and ρ_c increase until:
- Hydrogen ignition
 - Prolonged hydrogen burning starts
 - "Born" on ZAMS
 - Beginning of 'adult' life of the star

How Do These Steps Depend on Mass?

- There are many more low-mass than high-mass stars. How much of this is due to the formation process?
 - what determines the size of cloud fragments?
 - do different "triggers" produce different distributions of mass?
- More massive stars contract to main sequence much faster than less massive stars
- Upper mass limit: ? 100 200 M_{sun}
- Lower mass limit: $\sim 0.08 \text{ M}_{sun}$

Determining Stellar Ages

- In general, it is NOT possible to measure "age"
- For young stars, activity ~ $t^{-1/2}$ (e.g. f_x) - rotating rapidly; spin down on this timescale - eventually no disk to produce drag, so spindown stops
- HR diagram fits to theoretical models
- Clusters:
 - assume all stars born at same time
 - position in HR diagram depends on mass AND time
 - main sequence "turn off" gives age of cluster
 - clusters tend to disperse (become unbound)
 - some clusters don't stand out (e.g. moving groups)

If all stars started forming at once, the high-mass stars get to main sequence before the low-mass stars.

If cluster is old enough, high-mass stars already evolve off the main sequence before low-mass stars

