Lec #10: Thermal Energy (Chaps. 3 & 4)

- LAST: Start Thermal Energy
- work over lab #1 results
- Internal Kinetic and Potential Energy
- TODAY: Thermal Energy. I.
- Temperature and Heat
- Laws of Thermodynamics
- Specific Heat & Phase Transitions

NEXT: Thermal Energy. II.

- Heat Transfer (conduction, convection, radiation)
- Heat Engines & Efficiency
- How Engines Actually Work

	°C	°F	К
Water, ice point	0	32	273
Water, boiling point	100	212	373
Absolute zero	-273	-460	0
Liquid nitrogen boiling point	-196	-319	77
Liquid helium boiling point	-269	-454	4
Zinc, melting point	420	787	693
Gold, melting point	1063	1945	1336
Solid CO2 (Dry Ice) sublimation**	-78	-109	195

*Process of going from a solid directly to a gas phase

You should know how to convert between F & C. Absolute scales: Kelvin (°C) and Rankine (°F).

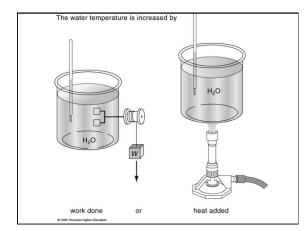
Temperature

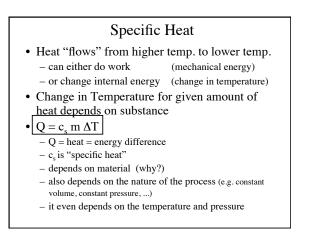
- Temperature **not** measure of **total** internal energy!
- Temperature is a measure of average kinetic energy of the molecules
- Internal K.E. -> 0 at "absolute zero", increases with temperature (but must use absolute scale)
- When 2 objects are brought into contact

 if T₁>T₂, "thermal energy" transfer (heat) from T₁ to T₂
 if T₁ = T₂, no (net) energy transfer
- "Heat" is the transfer of thermal energy from higher Temp ---> lower Temp
- · thought experiment: why do some objects feel colder?

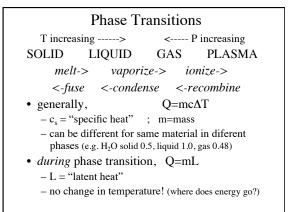
Temperature (continued)

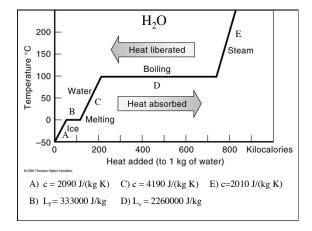
- Temperature parameterizes *average* energy – And it's something we can measure!
- Total internal energy = average * # of particles


 energy content depends on mass and temperature
 change in energy ~ change in temperature
- We can "parameterize" other internal energies (kinetic or potential) with temperatures
 - Tk kinetic temperature of molecules
 - electron temperature, ion temperature, atomic excitation temperature, radiation temperature.....



- many processes in nature are irreversible
- even reversible processes aren't 100% efficient


Thermal Energy Units


- 1 calorie = energy required to change temperature of 1 g of water by 1° Celsius
- 1 food Calorie = 1 kilocalorie (1000 calories)
- 1 BTU = energy required to change 1 pound of water by 1° Fahrenheit
- "Mechanical Equivalent of Heat":
 - historical reasons for different units
 - 1 calorie = 4.184 Joules
 - -1 BTU = 1055 J = 252 cal = 778 ft-lb

Material	Specific Heat (J/kg/°C)	Specific Heat (Btu/lb/°F)
Water 🛶	4186	1.00
Aluminum	900	0.22
Iron	448	0.12
Copper	387	0.093
Concrete	960	0.23
Glass	840	0.20
White pine	2800	0.67
lce 🔶	2090	0.50
Air	1004	0.24
Rock	840	0.20
Rock Decific Heat: mperature of		0.20 ed to change the ance by a fixed amou

