Lec #13: Electricity and Magnetism

LAST: Thermal Energy. III.

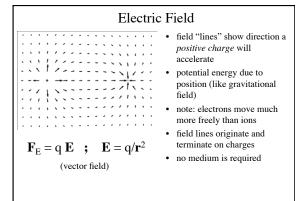
- Thermodynamic Efficiency
- Heat Engines
- Examples of Electromagnetic Induction

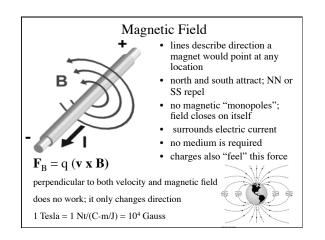
TODAY: Electricity & Magnetism

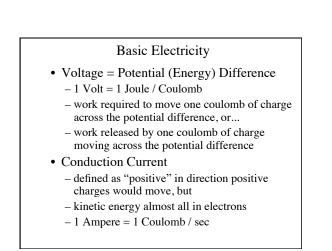
- Electric and Magnetic Forces and Fields
- Electromagnetic Induction
- Electric Circuits

NO CLASS UNTIL 11 MARCH MidTerm Due 5 PM 11 March

Examples of Electromagnetic Induction


- Electrical Current --> Magnetic field
 - compass needle deflection
 - electromagnet
- planetary magnetic fields (where is the current?)
- Changing Magnetic field --> Current
 - generator
 - motor
- Lenz's Law
 - "Will of Landru" demo
 - jumping rings

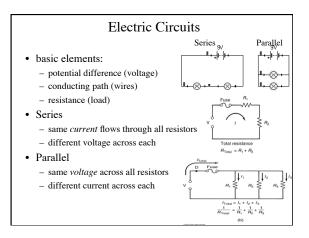

Electric Force

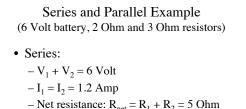

• force (vector) depends on product of charge, net sign, and separation of charges

$\mathbf{F}_{\rm E} = (\mathbf{q}_1 \, \mathbf{q}_2) \, / \, \mathbf{r}^2$

- electron charge -1.6 x10⁻¹⁹ Coulomb (C)
 (protons are +1.6x10⁻¹⁹)
 - charge is always conserved
 - force "neutralizes" charge separations

Basic Electricity (continued)


- complete circuit with a potential difference is required to have an electric current analogy with gravity: blocks don't fall sideways, and no work is done moving them horizontally
- · Resistance to current flow
 - energy lost to heating of conductor
 - resistivity is property of material (low for conductors, high for insulators)
 - resistance also due to length and diameter of wire
 - $-1 \text{ Ohm} = 1 \text{ Coulomb}^2 / (\text{Joule-sec})$

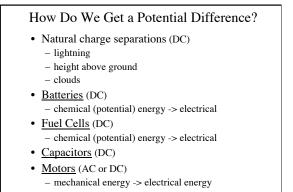

Material	Resistivity" (Ω·m)	Temperature Coefficient a((°C) ⁻¹]
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6 × 10 ⁻⁸	4.5×10^{-3}
Iron	10×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92 × 10-3
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome ^b	1.50×10^{-6}	0.4×10^{-3}
Carbon	3.5 × 10-5	-0.5×10^{-3}
Germanium	0.46	- 48 × 10-3
Silicon	640	-75×10^{-3}
Glass	1010-1014	
Hard rubber	≈ 10 ¹⁸	
Sulfur	1015	
Quartz (fused)	75×10^{16}	

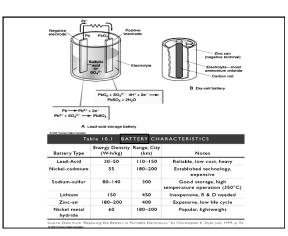
$V = R \times I$

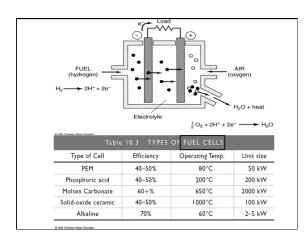
- Voltage = Resistance x Current
- or Volts = Amps x Ohms
- empirical relationship, never strictly true, but very close for conductors
- low R --> high I
- high R --> low I

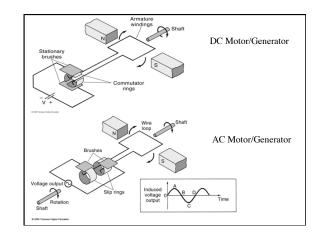
- Net resistance:
$$R_{net} = R_1 + R_2 = 5 O$$

• Parallel:

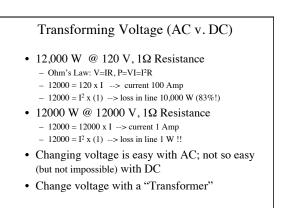

 $-V_1 = V_2 = 6$ Volt

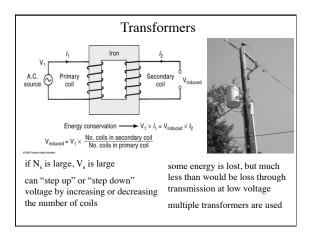

- $-I_1 + I_2 = 5$ Amp
- Net resistance: $1/R_{net} = 1/R_1 + 1/R_2 = 1.2$ Ohm

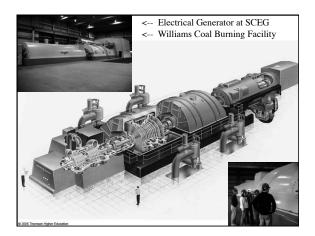

Power in Electrical Circuit

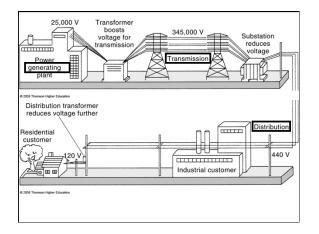

$P = V x I = I^2 x R$

- Power measured in Watt = Joule/sec
- Depends on current squared!
- low R --> high I; high R --> low I
- Power dissipated as either...
 - mechanical energy or
 - heat









	AC	DC
Source	Generator	Generator
		Battery
		Fuel Cell
		Natural
Use	Resistive Heating	Resistive Heating
	Motor	Motor
		Electronics

Some Electricity Fundamentals

- No current will flow unless

 potential difference exists
 conducting path exists ("circuit")
- Can't store energy in circuit (energy of motion)
- We get useful energy **out** through
 - resistive heating
 - motors (mechanical energy)
 - electronics
- Current follows *every available path*, not just "path of least resistance", but fraction through each path depends on resistance.