

Today: Begin Nuclear Power (Chaps 13-15)

Nuclear Power Today

- 33 countries, 443 power plants, 367 GW capacity
- 38 under construction
- 18 countries have higher reliance on nuclear than US
- France gets over 80% of electricity from nuclear
- In US:
 - 104 power plants; 99 GW total capacity
 - 20% of US electrical generation capacity
- South Carolina:
 - 7 nuclear plants
 - Savannah River Site

Nuclear v. Fossil Fuels

- No combustion byproducts!
 - no air pollution
 - no greenhouse gases
- Tiny solid waste stream!
 - coal: 100 train cars each day in; up to 10 cars of waste out nuclear: 1 train car enough fuel for 3 years (in and out)
- Nuclear is proven technology

 large scale electrical power plants
 smaller scale for ship propulsion
- Fuel can be reprocessed until all fissile material is used
- Some reactors can "breed" more fuel than they use!

Average Operating Expense of Electricity Generation for Major U.S. Investor-Owned Electric Utilities, 2002-2006 In Cents Per Kilowatt Hour

Nuclear		Hydroelectric	Gas Turbine
1.82	2.13	0.87	3.69
1.87	2.26	0.75	4.89
1.83	2.39	0.87	5.01
1.82	2.77	0.89	5.89
1.95	2.96	0.85	5.78
	Nuclear 1.82 1.87 1.83 1.83 1.82 1.95	Nuclear Fossil Steam 1.82 2.13 1.87 2.26 1.83 2.39 1.82 2.77 1.95 2.96	Nuclear Fossil Steam Hydroelectric 1.82 2.13 0.87 1.87 2.26 0.75 1.83 2.39 0.87 1.82 2.77 0.89 1.95 2.96 0.85

PROS

Emit relatively low amounts of carbon dioxide (CO₂).
 Large amount of electrical energy can be generated in one single plant.

CONS

Pollution during mining and processing. Radioactive waste. •Safety Issues. Although considered safe, accidents can still happen. •Uranium is scarce, its supply is estimated to last only for about 50 years •Nuclear Terrorism

Some Disadvantages

- Still relies on mining and "consuming" natural resources, but the impact is far less than coal and the geopolitics is not as unfavorable as petroleum.
- Uranium ore is a finite resource; maybe only ~50 years!
 but it can go a long way with reprocessing a/o breeding
 there might be more; we never really got serious
- Initial processing of fuel is very expensive and energy intensive (but infrastructure is already developed)
- Some radioactive waste release to environment is inevitable (though it's less than that from coal burning)
- · High-level radioactive waste must be dealt with
 - spent fuel
 - power plant itself

Fundamentals of Nuclear Physics

A. NUCLEAR STRUCTURE1. Atoms

- nucleus positively charged, massive, compact
- electrons small, negatively charged, occupy "large" volume
- chemical properties determined by electron # & excitation
- neutral atom if # electrons = # protons
- 92 natural "stable" elements

2. Common energy units: eV (electron-Volt) or MeV (10⁶ eV) Chemical reactions in atoms = few eV

Nuclear reactions = few to hundreds of MeV 1 eV = (1.6E-19 C) times (1 J/C)

$$v = (1.6E-19C)$$
 times (1 J/C

= 1.6E-19 Joules

				r	Metals												
1					Metallo	oids										17	18
1 H 1.008	2			1	Nonme	otals						13	14	15	16	1 H 1.008	2 He 4.003
3 Li 6.941	4 Be 9.012	Transition Metals										5 B 10.81	6 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3	4	5	6	7	8	9	10	11	12	13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
19 K 39,10	20 Ca 40.08	21 Sc 44,96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74,92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (97.91)	44 Ru 101.1	45 Rh (102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114,8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209.0)	85 At (210.0)	86 Rn (222.0)
87 Fr (223.0)	88 Ra (226.0)	103 Lr (262.1)	104 Rf (261,1)	105 Db (262.1)	106 Sg (263.1)	107 Bh (262.1)	108 Hs (265.1)	109 Mt (266.1)	110 Ds (271)	111 Rg (272)	112	113	114	115	116		
paneterizz preventing																	
Lanthanides																	
57 La 138.9	58 Ce 140.	1 14	59 Pr 40.9	60 Nd 144.2	61 Pm (144.9	6 S 15	2 m 0.4	63 Eu 152.0	64 Gd 157.2	68 TI 158	5 D 3.9	66 Dy 162.5	67 Ho 164.9	68 E 167	r 1 .3 1	69 Г т 68.9	70 Yb 173.0
Actinides																	
89 Ac 227.0)	90 Th 232.	0 23	2 a 31.0	92 238.0	93 Np (237.0) (244	4 7 u 4.1) (95 Am (243.1)	96 Cm (247.1	97 B (247	7 k 7.1) (3	98 Cf 251.1)	99 Es (252.1)) (257	0 n (2	101 Md (58.1)	102 No (259.1)
2001 Thomson Higher Education																	