Lec #23: Nuclear Power. II.

LAST TIME: Begin Nuclear Power (Chaps 13-15)

TODAY: 1) Fundamentals of Nuclear Physics;

- 2) Reactor Technology;
- 3) Prospects for Nuclear Power

NEXT: 1) Fusion Power?

2) Introduction to Renewables

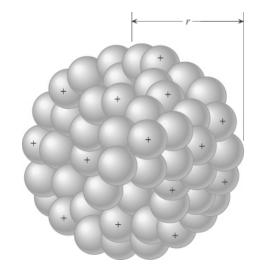
					Metals												
1					Metallo	oids										17	18
1 H 1.008	2				Nonme	etals						13	14	15	16	1 H 1.008	2 He 4.003
3 Li 6.941	4 Be 9.012	—			– Tra	ansitio	n Meta	als —			→	5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3	4	5	6	7	8	9	10	11	12	13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (97.91)	44 Ru 101.1	45 Rh (46 J Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209.0)	85 At (210.0)	86 Rn (222.0)
87 Fr (223.0)	88 Ra (226.0)	103 Lr (262.1)	104 Rf (261.1)	105 Db (262.1)	106 Sg (263.1)	107 Bh (262.1)	108 Hs (265.1)	109 Mt (266.1)	110 Ds (271)	111 Rg (272)	112	113	114	115	116		

^{© 2006} Thomson Higher Education

Lanthanides

57	58	59	60	61	62	63	64	65	66	67	68	_69	70
La 138.9	Ce 140.1	Pr 140.9		(144.9)		EU 152.0		158.9	162.5	Ho 164.9	Er 167.3		Yb 173.0

Actinides


89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa		Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
(227.0)	232.0	231.0	238.0										(259.1)

Fundamentals of Nuclear Physics (cont.)

- 3. Mass of free particles $(E=mc^2)$
 - proton = $1.6726E-27 \text{ kg} = 938.3 \text{ MeV/c}^2$
 - neutron = $1.6749E-27 \text{ kg} = 939.6 \text{ MeV/c}^2$
 - electron = $9.1094E-31 \text{ kg} = 0.511 \text{ MeV/c}^2$
- 4. Binding Energy and Mass of atom $< m_p n_p + m_n n_n + m_e n_e$
 - $\Delta mc^2 = binding energy$
 - most of this (MeV's) is in nucleus
- 5. Nuclear Structure (protons + neutrons)
 - EM repulsion of protons; neutron immune to EM force
 - must be a force stronger than EM operating over tiny distances
 - more protons -> more EM; more neutrons -> some dilution
 - Atomic Number: Z = # of protons; N = # of neutrons
 - Nucleon Number: A = # of nucleons (A = Z + N)
 - X; X is chemical symbol e.g. (or just ²³⁸U)

Nuclear Structure

The atomic nucleus consists of positively charged protons and neutral neutrons.

$$r \approx (1.2 \times 10^{-15} \,\mathrm{m}) A^{1/3}$$

Strong Nuclear Force

Mass number:

Number of nucleons in the nucleus, A=Z+N

Atomic number:
Number of protons in the
nucleus

Chemical Symbol

neutron number (N): the number of neutrons in the nucleus

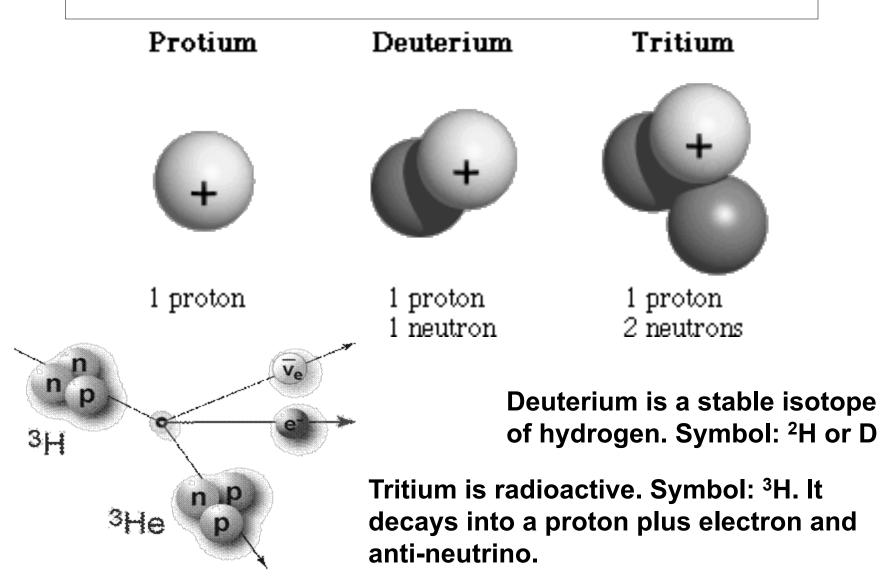
Unified Mass Unit (u)

 $1 u = 1.6605 \times 10^{-27} kg$

or

1 u = 931. 5 MeV

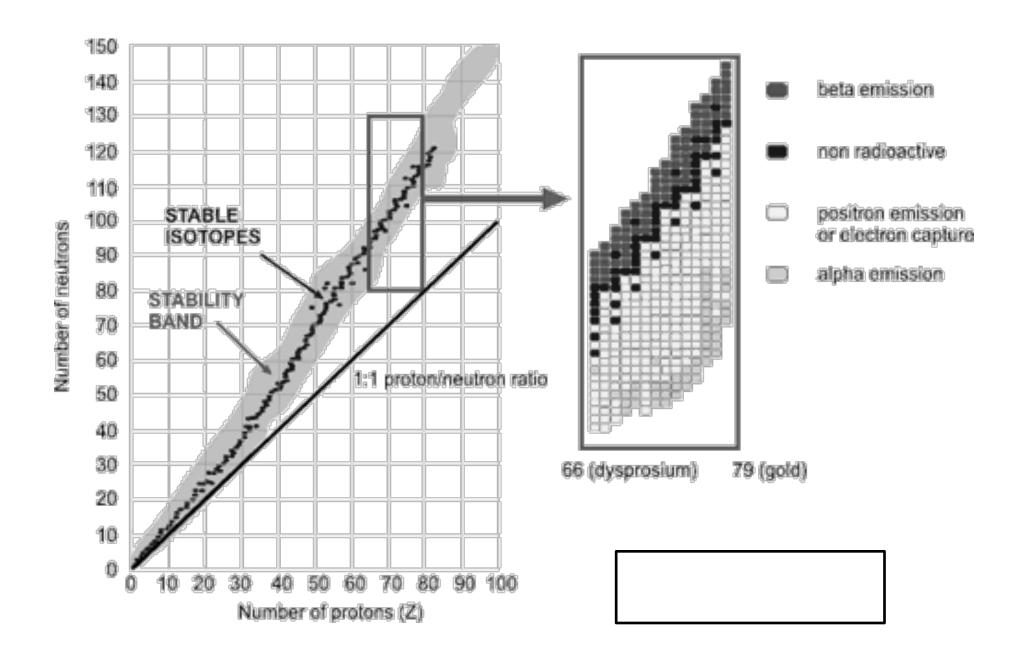
Fundamentals of Nuclear Physics (cont.)


B. ISOTOPES

- same Z, therefore same chemical properties
- different N (and A), therefore
 - different mass
 - different nuclear binding energy
 - different stability
 - different behavior in nuclear reactions
- elements usually form with a mix of isotopes
- over time, this mix changes, as "unstable" isotopes "decay"

```
    e.g. <sup>1</sup>H = hydrogen 99.985% stable
    . <sup>2</sup>H = deuterium 0.015% stable
    . <sup>3</sup>H = tritium ~0.000% half-life = 12.3 years
    e.g. <sup>238</sup>U 99.3% half-life = 4.47 billion years
    . <sup>235</sup>U 0.7% half-life = 0.70 billion years
```

Isotopes of Hydrogen


ISOTOPES: Nuclei that contain the same number of protons but a different number of neutrons.

Fundamentals of Nuclear Physics (cont.)

C. STABILITY OF ISOTOPES

- certain combinations of neutron # and proton # hold together for a long time
- others transmute themselves to a different element by radioactive decay (alpha, beta, gamma, fission, ...)
- adding neutrons to a stable nucleus generally makes it unstable
- ~400 stable nuclei known; all have Z ≤ 83 (Bismuth)
- generally stable if Z a/or N = 2, 8, 20, 28, 50, 82, 126
 - nuclear "shell" structure analogous to atomic shells
 - 4He, ¹⁶O, ⁴⁰Ca, etc. are like noble gases very stable (tightly bound)

Nuclear Reactions

A. Radioactivity

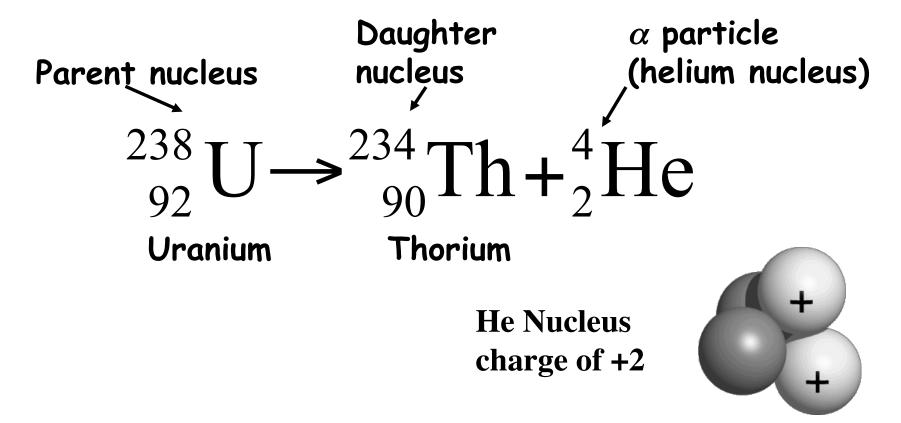
Spontaneous "decay" to a different nuclear state, or even a different type of atom, through the emission or absorption of particles or electromagnetic energy, releasing energy

1. Alpha Decay: Emission of a <u>helium nucleus</u> (2P, 2N)

$$z^{A}X --> z^{A-4}Y + z^{4}He$$
 $Heat = (M_x - M_Y - M_\alpha)c^2 -> K.E. \text{ of } X, Y, \alpha$

2. Beta Decay: Emission or absorption of <u>electron</u> or <u>positron</u>

$$z^{A}X \longrightarrow z_{+1}^{A}Y + \beta^{-} + \underline{\nu}$$
 $z^{A}X \longrightarrow z_{-1}^{A}Y + \beta^{+} + \nu$
 $z^{A}X + \beta^{-} \longrightarrow z_{-1}^{A}X + \nu$


3. Gamma Decay: Emission of a photon (de-excitation)

$$_{Z}^{A}X^{*} \longrightarrow _{Z}^{A}X + \gamma$$

Decay Processes

Alpha decay

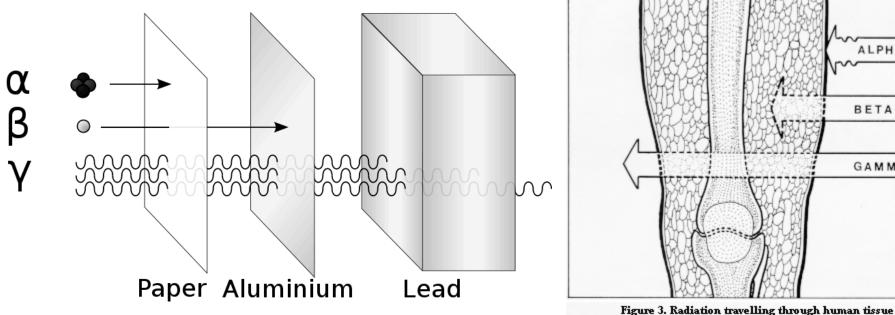
- The α decay is a nuclear transmutation: nuclei of one element change into nuclei of a lighter element.

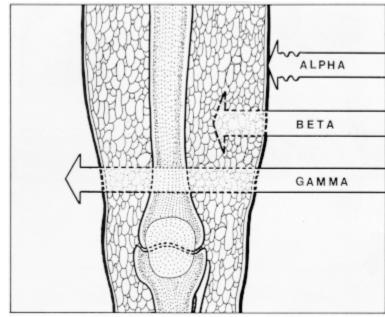
Beta Decay

 During beta decay, the daughter nucleus has the same number of nucleons as the parent, but the atomic number is changed by one.

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e$$

Gamma Decay


- Gamma rays are given off when an excited nucleus "falls" to a lower energy state
- The de-excitation of nuclear states results from "jumps" made by a proton or neutron
- The excited nuclear states may be the result of violent collision or more likely of an alpha or beta emission


$$^{12}_{6}C*$$

$$\rightarrow^{12}_{6}C + \gamma_{ray}$$

PROPERTIES OF NUCLEAR RADIATIONS Table 13.1 Type of Radiation Range α particles a sheet of paper, a few centimeters of air, or thousandths of a centimeter of biological tissue β particles a thin aluminum plate or tenths of a centimeter of biological tissue several centimeters of lead or meters γ rays of concrete

© 2006 Thomson Higher Education

Nuclear Reactions (cont.)

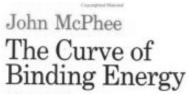
B. Spontaneous Decay - Exponential (Half Life)

$$N = N_o e^{-\lambda t}$$

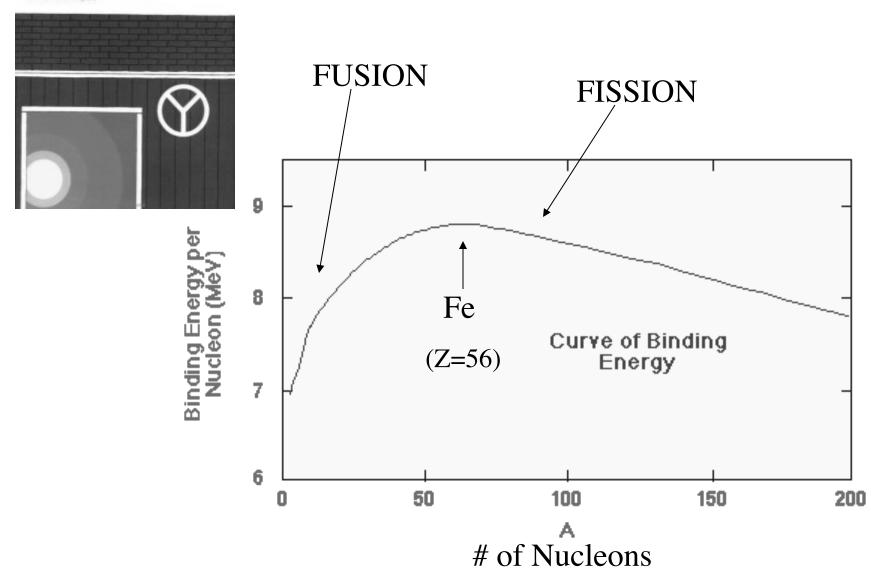
- Because... Rate = λ N
- 1 Curie = $3.7 E 10 sec^{-1} (1 g of radium)$
- Half life = $ln(2)/\lambda$ (recall rule of 70?)
- Nuclei can also be rendered unstable in nuclear reactions

Nuclear Reactions (cont.)

C. Neutrons


- neutrons can not be accelerated, focused, etc.
- free neutrons decay (~10 min) to proton + electron
- neutrons easily pass by electron cloud and are not repelled by positively charged nucleus
- if they are traveling slowly enough, they stick; if they travel faster, they scatter
 - e.g. thermal neutrons (300 K) travel ~ 2.8 km/s
- if they are captured, they can produce an unstable isotope, which can then either DECAY or FISSION

Nuclear Fission


A. Fission and Fusion

- <u>Fission</u> break up into 2 or more smaller pieces
- <u>Fusion</u> combine 2 or more pieces into a bigger piece
- both involve transmutation of elements
- both can be exothermic: energy released = Δmc^2
 - if $M_{big} < \sum M_{small}$, fusion is exothermic
 - if $M_{big} > \sum M_{small}$, fission is exothermic
- both processes occur in nature
 - fusion inside stars
 - fission e.g. OKLO
- fission of U discovered in late '30s
 - 1st controlled chain reaction in 1942
 - 1st uncontrolled chain reaction 1945

A Journey into the Awesome and Alurming World of Theodore B. Taylor

Nuclear Fission (cont.)

B. Fission Example


$$n + {}^{235}U \longrightarrow {}^{236}U$$

 ${}^{236}U \longrightarrow A^* + B^* + 3n$

A* and B* have too many neutrons to be stable; long series of beta decays to eventually become stable

- energy released as *kinetic energy* of products
- neutron initiates reaction, and reaction produces neutrons
- for Uranium, only slow neutrons will cause fission, but neutrons produced by fission move very <u>fast</u>
- need "moderator" to slow them down
- if 1 or more of these neutrons stimulates another fission, a chain reaction can result

Nuclear Fission (cont.)

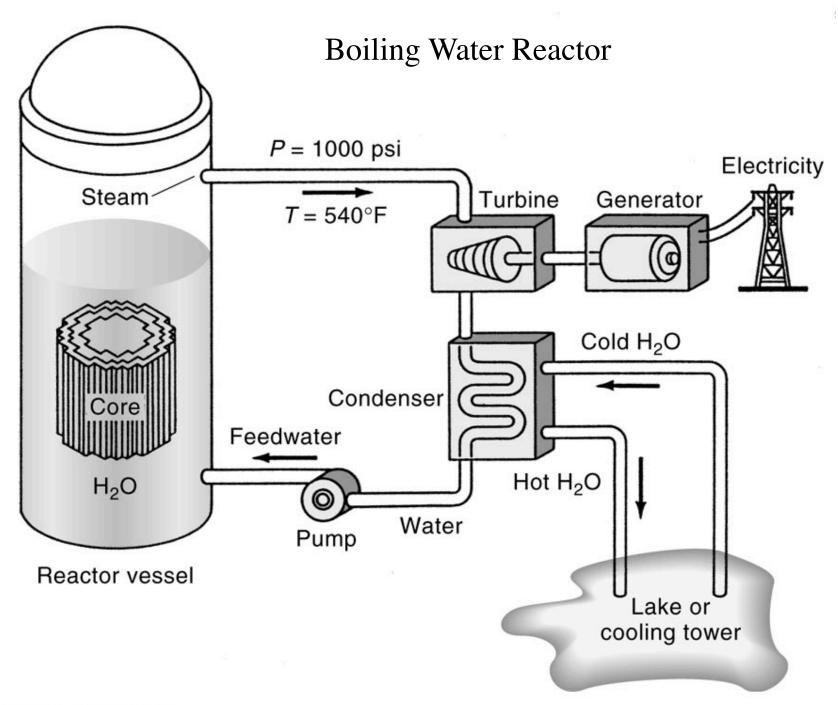
- K = average # of fission inducing neutrons per fission
 - water is a moderator: it slows down neutrons
 - -depends on material, moderators, shape and size of "pile", temperature, etc.
 - if K<1 reaction dies out
 - if K=1 continuous power production
 - if K>1 possibly destructive chain reaction

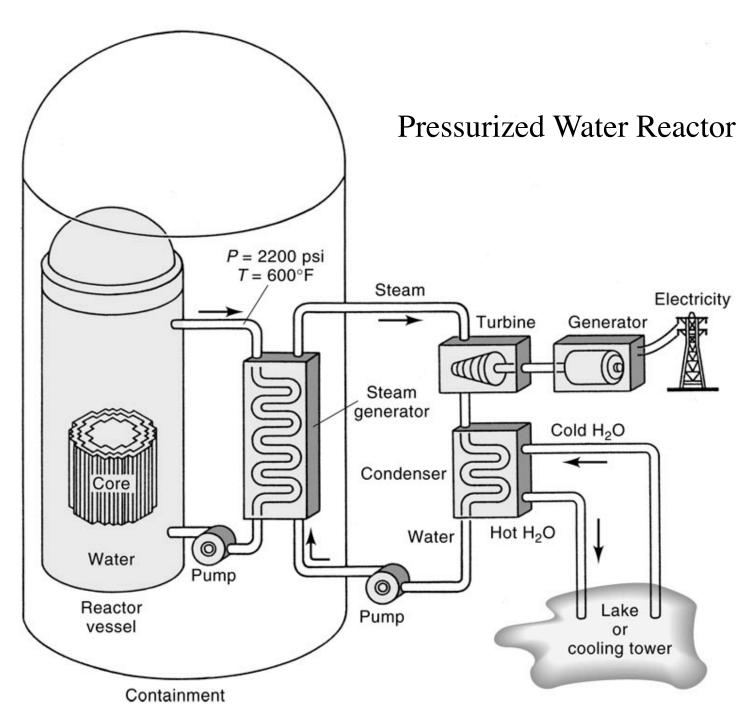
Nuclear Fission (cont.)

C. Enrichment of Fissile Material

• Natural isotope ratio: $^{238}U/^{235}U \sim 142$

- 99.3% ²³⁸U [changes very slowly


 $- 0.7\%^{235}U$ over time]


- with water as moderator, need 3 or 4% ²³⁵U
- with heavy water, we can use natural mix
- for bombs, need 90% or more ²³⁵U (or Plutonium)
- how do we change the isotope ratio?
 - Diffusion (ORNL)
 - Centrifuge (LBL)
 - Laser (LANL)
 - Breeder reactor (Hanford, SRS)
 - Fuel reprocessing

$$^{238}\text{U} + \text{n} \rightarrow ^{239}\text{U} + \gamma$$
 $^{238}\text{U} \rightarrow ^{235}\text{U}$ Enrichment in reactor $^{239}\text{U} \rightarrow ^{239}\text{Np} + \beta^- + \overline{\nu}$ $(T_{\frac{1}{12}} = 23.5 \text{ min.})$ $(T_{\frac{1}{12}} = 2.35 \text{ days})$ $^{239}\text{Np} \rightarrow ^{239}\text{Pu} + \beta^- + \overline{\nu}$ $(T_{\frac{1}{12}} = 2.35 \text{ days})$ $(T_{\frac{1}{12}} = 2.44 \times 10^4 \text{ years})$

NUCLEAR POWER UNITS BY REACTOR TYPE, WORLDWIDE

Reactor Type	Units (in o	Under Construction		
Pressurized light-water reactors (PWR)	243	214,234	43	
Boiling light-water reactors (BWR)	91	74,941	8	
Gas-cooled reactors, all types	36	12,239	0	
Heavy-water reactors, all types	33	18,645	16	
Graphite-moderated light-water reactors (LGR)	15	14,785	1	
Liquid-metal-cooled fast breeder reactors (LMFBR)	3	928	4	

