Lec #3: Energy Implications of Growth

LAST TIME:

- Bartlett Video, Part 1: Mathematics of Growth
- Introduction to Course

TODAY:

• Discussion of Population Growth and its Implications for Resource Consumption

NEXT WEEK: (finish reading Chapter 1)

- Estimating the Remaining Lifetime of Fossil Fuels
- What causes an "energy crisis"?
- Can it be avoided?

	Year	Total Number of people	Populatior Density (1/m ²)
current	1998	5x10 ⁹	4x10 ⁻⁵
mass_people=mass_earth	3540	7.5x10 ²²	1.5x10 ⁸
using 100% of solar energy	2600	8.5x10 ¹⁴	1.6
using 100% incident on land w/ clouds	2500	1.1x10 ¹⁴	0.2
using 10% through consumption	2345	6.7x10 ¹¹	1.2x10 ⁻³
1/4 land arable; 50% food to animals	2140	8.4x10 ¹⁰	6.3x10 ⁻⁴
typical city			6.2x10 ⁻⁴
Club of Rome - maximum		15-20 billion	1.3x10 ⁻⁴
UN - maximum		11.5 billion	8.6x10 ⁻⁵

Increase Populations	Decrease Populations	
Procreation	Abstention	
Motherhood	Contraception/Abortion	
Large Families	Small Families	
Immigration	Stopping Immigration	
Medicine	Disease	
Public Health		
Sanitation		
Peace	War	
Law & Order	Murder & Violence	
Scientific Agriculture	Famine	
Accident Prevention	Accidents	
Clean Air	Pollution	
Ignorance of the Problem		

- <u>Example #2: Population Growth (continuous</u> <u>exponential)</u>
 - # of babies born proportional to # of potential parents
 - k is constant of proportionality (e.g. fraction having offspring each year)
 - dN(t)/dt = k*N(t) (differential equation)
 - solve by integrating... $\int (1/N) dN = \int k dt$
 - so ln(N) = kt; undo natural log with exponential
 - so general formula for exponential growth is

 $N(t)=N_0e^{kt}$

t=time (continuously varies)

