Lec #8: Mechanical Energy. II.

LAST TIME: Mechanical Energy. I.

- Wrap-Up Discussion: Lessons of History
- Forms of Energy; Conversion of Energy
- Newton's Laws of Motions; Forces

TODAY: Mechanical Energy. II.

- Work, Power, and Energy
- Kinetic Energy, Potential Energy

NEXT WEEK: Thermal Energy. I. (read Chapter 4)

Forces in Nature

- <u>Gravity</u> $F = G m_1 m_2/r^2$ - g = G M_c/R_c² = 9.8 m/s² = 32 ft/s²
 - on Earth, F = mg
- Electric $F = q_1 q_2/r^2$ - attractive or repulsive
- Magnetic (electromagnetic)
- Nuclear
- These are all "conservative".
 - depend only on position
 - mechanical energy is <u>conserved</u> (with proper accounting)

- Unfortunately (?), mother nature has other forces that are not conservative
 - mechanical energy NOT conserved
 - depend on something other than position
- examples
 - Friction: depends on "roughness" of surface, velocity, mass
 - Drag: depends on aerodynamics (shape); cube of velocity!

V	ectors v. Scalers;	Units
Position	s(t)	meters (m)
	(x,y,z v. time)	feet (ft)
Velocity	$\mathbf{v}(t) = d\mathbf{s}/dt$	meters/second (m/s)
	speed = $ \mathbf{v}(t) $	feet/second (ft/s) (fps)
Acceleration	$\mathbf{a}(t) = d\mathbf{v}/dt$	$(m/s)/s = m/s^2$
	$= d^2 s/dt^2$	ft/s ²
Mass	measure of inertia	kilograms (kg)
	amount of "stuff"	slugs
Force	F; long-range forces	Newtons (kg m / s ²)
	contact forces	pounds (lb)

Rotational Analogs				
Displacement	θ(t)	dimensionless: <u>radians</u> 2π rad = 360°		
Angular	$\boldsymbol{\omega}(t) = \mathrm{d}\boldsymbol{\theta} /\mathrm{d}t$	radians/sec (s-1)		
Velocity				
Angular	$\boldsymbol{\alpha}(t) = d\boldsymbol{\omega} / dt$	(s ⁻²)		
Acceleration	$= d^2 \theta / dt^2$			
Moment of	$\mathbf{I} = \int \mathbf{m}(\mathbf{r}) \mathrm{d}\mathbf{r}$	(kg m)		
Inertia				
Т	$\tau = I \alpha$	(Nt m)		

WORK

Work = Force x Distance

- really, it's Work = $\mathbf{F} \cdot \mathbf{s} = \mathbf{F} \operatorname{s} \cos \theta$!
- only net force in direction of motion is relevant
- scalar, not vector
- (+) if force is applied in direction of motion, work is done TO the "system"; "energy" is added to the system; system accelerates; velocity increases
- (-) if force is applied in opposite direction, energy is removed FROM system; system decelerates; velocity decreases

• If all forces are "conservative" (and if you allow for "*potential energy*"):

Work = Δ (Mechanical Energy) (change in mechanical energy)

- Energy is measure of "Capacity to do Work"
- In the REAL world, there is never a perfect conversion between work and "*kinetic energy*"
 - Friction, drag, etc. non-conservative
 - Where does energy go?
 - $-\Delta Energy = Work + ?$ (next week)

Power

- Rate at which work is done. Energy / time

 defined "instantaneously"; depends on how fast
 you move something with a force
 - Power is what we transfer from our electrical outlets to our appliances (e.g. to turn a motor) or from our engine to turn our wheels
 - Energy is what we pay for (but maybe we would be better off if they could meter power)
- Units: energy/time
 - Joule/second (1 Watt = 1 J/s)
 - Horsepower (1 HP = 746 W)

Kinetic Energy

- energy associated with motion
- could be converted to work if motion brought to a halt

$KE = (1/2) \text{ m } \text{v}^2$

- scalar, not vector (v is speed, not velocity)
- SI units: kg m² s⁻² = Nt m = Joule (J)
- cgs units: g cm² s⁻² = erg (1 erg = 10⁻⁷ J)
- english units: slug $ft^2 s^{-2} = foot$ -pound
- other units: calorie, BTU, kilowatt-hour

Kinetic Energies for Various Objects					
Object	mass	speed	KE		
	(kg)	(m/s)	(J)		
Earth orbiting Sun	6.0 E -24	3.0 E 4	2.7 E 33		
Moon orbiting Earth	7.4 E -22	1.0 E 3	3.8 E 28		
Rocket @ escape speed	500	1.1 E 4	3.1 E 10		
Car @ 55 mph	2000	25	6.3 E 5		
Running athlete	70	10	3.5 E 3		
rock dropped from 10m	1	14	9.8		
golf ball @ terminal speed	.046	44	4.5		
raindrop @ terminal speed	3.5 E -5	9	1.4 E -3		
oxygen molecule in air	5.3 E -26	500	6.6 E -21		

 ${\sim}10^{20}\,J\,$ used in US annually

Potential Energy

- if force is conservative, change in POSITION can be converted to a change in VELOCITY (i.e. just let go and let force act over a distance)
- Total Mechanical Energy = constant = Mechanical KE + Mechanical PE

• e.g. Gravity

- PE=work=force x distance= (mg)(h)
- hold above ground: v=0, KE=0,
- drop; hits ground w/ v=gt, KE=1/2mv², PE=0

PE=mgh

Summary of Omes						
Table 2.4 UNITS IN MECHANICS						
Quantity	SI	English	Conversions			
Velocity	m/s	ft/s	I ft/s = 0.305 m/s I mph = 0.447 m/s			
Acceleration	m/s ²	ft/s ²	$I ft/s^2 = 0.305 m/s^2$			
Force	newton (N)	lb	I Ib = 4.45 N			
Energy	joule (J)	ft-lb	I ft-Ib = I.356 J			
Power	watt (W)	ft-lb/sec, hp	550 ft-lb/s = 1 hp = 746 V			

E = P x t, so 1 kWh = 1000 J/s * 3600 skWh is a unit of <u>energy</u>; what is electricity cost/kWh?

Examples of Mechanical Energy

- *direct* use of energy to produce motion – automobiles, trains, airplanes, etc.
 - motors & generators
 - pumps and compressors
 - fans
 - labor saving appliances and toolsothers?
- what else do we use energy for?

Lab 1: Mechanical Energy

- Everyone record their own measurements (but you can help each other out). Make sure you have all the data you need to work the lab.
- Write-Up Due next Monday (nothing formal, just show your work and discuss what you learned.