Lec #9: Thermal Energy (Chaps. 3 & 4)

- LAST: Mechanical Energy
- Laws of Motion; Forces
- Work, Kinetic Energy, Potential Energy, Power
- TODAY: Thermal Energy. I.
- Internal Kinetic and Potential Energy
- Temperature and Heat
- Laws of Thermodynamics
- Specific Heat & Phase Transitions
- WEDNESDAY: Thermal Energy. II.
- Heat Transfer (conduction, convection, radiation)
- Heat Engines & Efficiency

Recap

- Work = Force x Distance x ($\cos \theta$)
- Power=d/dt (Work) (instantaneous)
- KE = (1/2) m v²
 - change in speed -> change in KE
 - note: can change velocity w/out change in KE
- PE = Force x Distance (e.g. mgh for gravity)
- If forces are "conservative":
 - Mechanical KE + Mechanical PE = constant
 - Work = change in Mechanical Energy
- If not conservative, where does the energy go?

How Do We Measure Total Energy?

- Total Energy = External (M.E.) + Internal
- Internal Kinetic: Thermal
- Internal Potential: Chemical; Nuclear
 - molecular bonds
 - atomic bonds
 - nuclear bonds
- We can't measure Total Energy, but we know that it's huge and takes many forms
- We can, however, measure *changes*....

First Law of Thermodynamics

- $\Delta E = \Delta External + \Delta Internal = Work + Heat$
- In practice, "**heat**" usually refers only to a **change** in internal (thermal) energy, <u>not a basic property</u> of a substance.

- objects don't contain heat, but they do contain energy

• "Thermal energy" usually refers only to internal *kinetic* energy, though this is only a small fraction of the total internal energy

• To measure thermal energy, we use "temperature"

Temperature

- Temperature not measure of total internal energy!
- Temperature is a measure of **average** kinetic energy of the molecules
- Internal K.E. -> 0 at "absolute zero", increases with temperature (but must use absolute scale)
- When 2 objects are brought into contact

 if T₁>T₂, "thermal energy" transfer (heat) from T₁ to T₂
 If T₁ = T₂, no energy transfer
- "Heat" is the transfer of thermal energy from higher Temp ---> lower Temp

	°C	°F	К
Water, ice point	0	32	273
Water, boiling point	100	212	373
Absolute zero	-273	-460	C
Liquid nitrogen boiling point	-196	-319	77
Liquid helium boiling point	-269	-454	4
Zinc, melting point	420	787	693
Gold, melting point	1063	1945	1336
Solid CO2 (Dry Ice) sublimation**	-78	-109	195

*Process of going from a solid directly to a g

You should know how to convert between F & C. Absolute scales: Kelvin (°C) and Rankine (°F).