Lec \#12: Electricity \& Magnetism

TODAY: Basics of Electricity (Chap 10, 11)

- The Electrostatic Force
- Circuits and Ohm's Law
- Batteries and Other Sources of Voltage
- Residential Circuits; AC v. DC

NEXT: Generation, Transmission, \& Distribution (Chap 11)

- Motors, Generators, Transformers
- The Electrical Power "Grid"

Electric Field

$\mathbf{F}_{\mathrm{E}}=\mathrm{q} \mathbf{E} ; \quad \mathbf{E}=\mathrm{q} / \mathbf{r}^{2}$ (vector field)	- field "lines" show direction a positive charge will accelerate - potential energy due to position (like gravitational field) - note: electrons move much more freely than ions - field lines originate and terminate on charges - no medium is required

field "lines" show direction a accelerate

- potential energy due to position (like gravitational fle
note: electrons move much
-

field lines originate and terminate on charges

- no medium is required

Basic Electricity

- Voltage $=$ Potential (Energy) Difference
-1 Volt $=1$ Joule $/$ Coulomb
- work required to move one coulomb of charge across the potential difference, or...
- work released by one coulomb of charge moving across the potential difference
- Conduction Current
- defined as "positive" in direction positive charges would move, but
- kinetic energy almost all in electrons
- 1 Ampere $=1$ Coulomb $/ \mathrm{sec}$

Basic Electricity (continued)

- complete circuit with a potential difference is required to have an electric current analogy with gravity: blocks don't fall sideways,
and no work is done moving them horizontally
- Resistance to current flow
- energy lost to heating of conductor
- resistivity is property of material (low for conductors, high for insulators)
- resistance also due to length and diameter of wire
-1 Ohm $=1$ Coulomb $^{2} /($ Joule-sec $)$

Ohm's Law

$$
\mathrm{V}=\mathrm{R} \times \mathrm{I}
$$

- Voltage $=$ Resistance x Current
- or Volts $=$ Amps \times Ohms
- empirical relationship, never strictly true, but very close for conductors
- low R --> high I
- high R --> low I

Power in Electrical Circuit

$$
\mathrm{P}=\mathrm{V} \times \mathrm{I}=\mathrm{I}^{2} \times \mathrm{R}
$$

- Power measured in Watt $=$ Joule/sec
- Depends on current squared!
- low R --> high I; high R --> low I
- Power dissipated as either...
- mechanical energy or
- heat

Series and Parallel Example
(6 Volt battery, 2 Ohm and 3 Ohm resistors)

- Series:
$-V_{1}+V_{2}=6$ Volt
$-\mathrm{I}_{1}=\mathrm{I}_{2}=1.2 \mathrm{Amp}$
- Net resistance: $\mathrm{R}_{\text {net }}=\mathrm{R}_{1}+\mathrm{R}_{2}=5 \mathrm{Ohm}$
- Parallel:
$-V_{1}=V_{2}=6$ Volt
$-\mathrm{I}_{1}+\mathrm{I}_{2}=5 \mathrm{Amp}$
- Net resistance: $1 / \mathrm{R}_{\text {net }}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}=1.2 \mathrm{Ohm}$

How Do We Get a Potential Difference?

- Natural charge separations (DC)
- lightning
- height above ground
- clouds
- Batteries (DC)
- chemical (potential) energy -> electrical
- Fuel Cells (DC)
- chemical (potential) energy -> electrical
- Capacitors (DC)
- Motors (AC or DC)
- mechanical energy -> electrical energy

Review: Electricity Fundamentals

- No current will flow unless
- potential difference exists
- conducting path exists ("circuit")
- Can't store energy in circuit (energy of motion)
- We get useful energy out through
- resistive heating
- motors (mechanical energy)
- electronics
- Current follows every available path, not just "path of least resistance", but fraction through each path depends on resistance.

Residential Circuits

- $120 \mathrm{~V}_{\mathrm{AC}}$
- residential wiring is "alternating current"
- 120 Volts is an $R M S$ average
- AC circuits also obey Ohm's law
- Power $=$ V x I $=120 \times \mathrm{I}$ (Watts) $\left[=\mathrm{I}^{2} \times \mathrm{R}\right]$
- 100 Watt bulb : 5/6 Amp
-400 Watt refrigerator $=3.3 \mathrm{Amps}$
- 4,000 Watt water heater : 33 Amps! (this can't be right! what's wrong here?)

Table 10.2 ReSIDENTIAL	al appliance	usage
	Average Wattage	Monthly kWh used
Food Preparation		
Carving knife	100	0.5
Coffeemaker	1000	9
Deep fryer	1500	7
Dishwasher	1200	30
Frying pan	1200	8
Hot plate	1200	8
Mixer	150	1
Microwave oven	1450	15
Range wich oven	2000	60
Roaster	1500	5
Toaster	1100	3
Trash compacter	400	4
Waffle iron	1200	2
Waste disposer	400	2
Food Preservation		
Freezer (16 cu ft)	350	100
Freezer (frostless 16 cu ft)	440	150
Refrigerator/freezer (12 cu ft)	235	60
Refrigerator/freezer (frostless 17 cu ft	450	150
Refrigerator/freezer (frostless 18 cu ft	550	220
Home Entertainment		
Computer (notebook)	90	6
Radio	10	2
Radio/record player	80	5
Color Television	100	18

Residential Circuits (continued)

- homes have circuit boxes with several separated circuits (each of which can carry 10 to 20 Amps), each with a circuit breaker (switch) or fuse
- main breaker typically 100 to 200 Amps
- outlets in each circuit are wired in parallel
- circuits themselves are in parallel (all have same voltage)
- how/why do we get 240 V ?

Residential Circuits (continued)

- homes have circuit boxes with several separated circuits (each of which can carry 10 to 20 Amps), each with a circuit breaker (switch) or fuse
- main breaker typically 100 to 200 Amps
- outlets in each circuit are wired in parallel
- circuits themselves are in parallel (all have same voltage)
- how/why do we get 240 V ?

