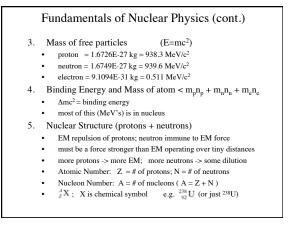
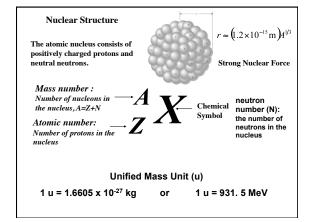
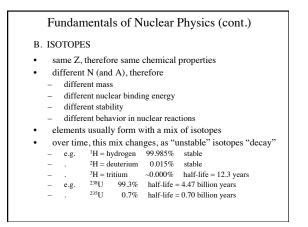
Lec #23: Nuclear Power. II.

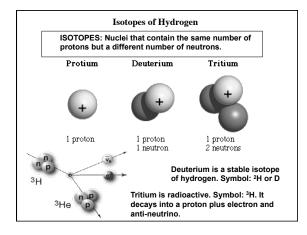
LAST TIME: Begin Nuclear Power (Chaps 13-15)

TODAY: Fundamentals of Nuclear Physics

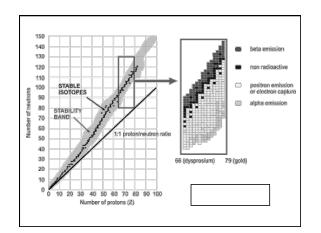

NEXT: Reactors and Environmental Impact

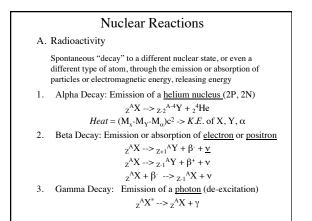

Fundamentals of Nuclear Physics A. NUCLEAR STRUCTURE

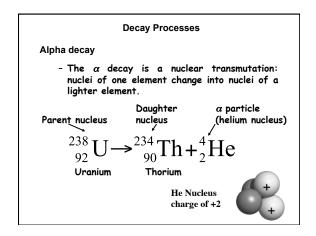

- 1. Atoms
 - nucleus positively charged, massive, compact
 - · electrons small, negatively charged, occupy "large" volume
 - chemical properties determined by electron # & excitation
 - neutral atom if # electrons = # protons
 - 92 natural "stable" elements

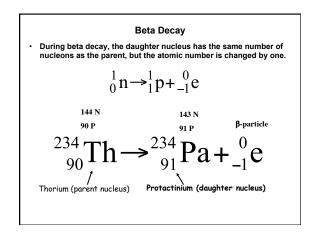

 Common energy units: eV (electron-Volt) or MeV (10⁶ eV) Chemical reactions in atoms = few eV Nuclear reactions = few to hundreds of MeV 1 eV = (1.6E-19 C) times (1 J/C) = 1.6E-19 Joules

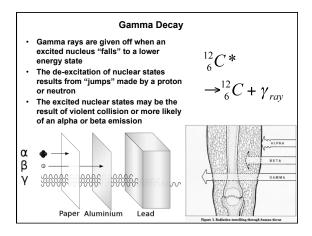
					Metals												
1					Metallo	oids										17	18
1 H 1.008	2				Nonme	tals						13	14	15	16	1 H 1.008	2 He 4.003
3 Li 6.941	4 Be 9.012	-			- Tra	ansitio	n Met	als -			,	5 B 10.81	6 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3	4	5	6	7	8	9	10	11	12	13 AI 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74,92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95,94	43 Tc (97.91)	44 Ru 101.1	45 Rh (102.9	46 Pd 106,4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	71 Lu 175.0	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 lr 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209.0)	85 At (210.0)	86 Rn (222.0
87 Fr (223.0)	88 Ra (226.0)	103 Lr (262.1)	104 Rf (261.1)	105 Db (262.1)	106 Sg (263.1)	107 Bh (262.1)	108 Hs (265.1)	109 Mt (266,1)	110 Ds (271)	111 Rg (272)	112	113	114	115	116		
	hanic		on														
57 La 138.9	58 Ce 140.		59 Pr 40.9	60 Nd 144.2	61 Pm (144.9		m	63 Eu 152.0	64 Gd 157.2	65 T 158	5	66 Dy 62.5	67 Ho 164.9	68 E 167	r 1	69 Гт 68.9	70 Yb 173.0
Actin	nides																
89 Ac	90 Th	F	91 Pa	92 238.0	93 Np	9 P	u	95 Am (243.1)	96 Cm (247.1	97 B (247	k 🗌	98 Cf	99 Es	10 Fr (257	n I	101 Md 58,1)	102 NC (259.

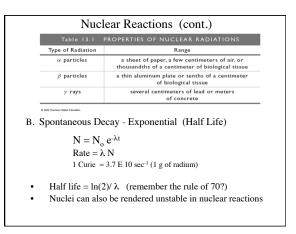




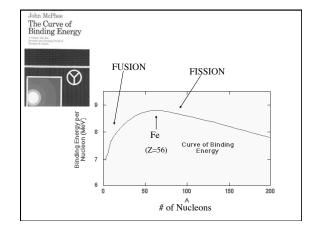


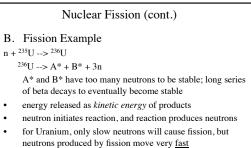

C. STABILITY OF ISOTOPES


- certain combinations of neutron # and proton # hold together for a long time
- others transmute themselves to a different element by radioactive decay (alpha, beta, gamma, fission, ...)
- adding neutrons to a stable nucleus generally makes it unstable
- ~400 stable nuclei known; all have $Z \le 83$ (Bismuth)
- generally stable if Z a/or N = 2, 8, 20, 28, 50, 82, 126
- nuclear "shell" structure analogous to atomic shells
 ⁴He, ¹⁶O, ⁴⁰Ca, etc. are like noble gases very stable (tightly bound)

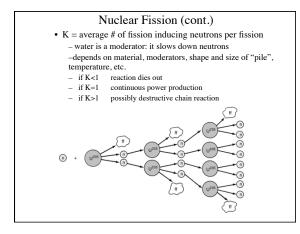


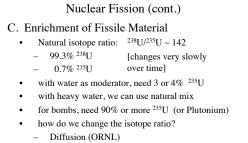
Nuclear Reactions (cont.)


- C. Neutrons
- accelerators yield charged particles with energy up to 1 TeV
- use electric currents to generate electric and magnetic fields; only accelerate *charged* particles
- neutrons can not be accelerated, focused, etc.
- free neutrons decay (~10 min) to proton + electron
- neutrons easily pass by electron cloud and are not repelled by positively charged nucleus
- if they are traveling slowly enough, they stick; if they travel faster, they scatter
 - e.g. thermal neutrons (300 K) travel ~ 2.8 km/s
- if they are captured, they can produce an unstable isotope, which can then either DECAY or FISSION


Nuclear Fission

A. Fission and Fusion


- Fission break up into 2 or more smaller pieces
- <u>Fusion</u> combine 2 or more pieces into a bigger piece
- both involve transmutation of elements
- both can be exothermic: energy released = Δmc^2
- if $M_{big} < \sum M_{small}$, fusion is exothermic
- if $M_{big} > \sum M_{small}$, fission is exothermic both processes occur in nature
- fusion inside stars
- fission e.g. OKLO
- fission of U discovered in late '30s
- 1st controlled chain reaction in 1942
 - 1st uncontrolled chain reaction 1945



- need "moderator" to slow them down
- if 1 or more of these neutrons stimulates another fission, a chain reaction can result

- Centrifuge (LBL)
- Laser (LANL) _
- Breeder reactor (Hanford, SRS) _
- _ Fuel reprocessing

${}^{239}\text{U} \rightarrow {}^{239}\text{Np} + \beta^- +$ ${}^{239}\text{Np} \rightarrow {}^{239}\text{Pu} + \beta^- +$ ${}^{239}\text{Pu} \rightarrow {}^{235}\text{U} + \alpha$	\overline{v}	(T _{1/2} (T _{1/2} (T _{1/2} =2.44	= 23.5 min. = 2.35 days 4×10^4 years
NUCLEAR POWER UNITS BY REACTOR Reactor Type	Units	Net MWe	Under Construction
Pressurized light-water reactors (PWR)	243	214,234	43
Boiling light-water reactors (BWR)	91	74,941	8
		12,239	õ
Gas-cooled reactors, all types	36		
	36	18,645	16
Gas-cooled reactors, all types			16 1