Lec \#3: Energy Implications of Growth

 Previous:- Bartlett Video, Part 1: Mathematics of Growth
- Introduction to Course

TODAY:

- Discussion of Population Growth and its Implications for Resource Consumption
- Mathematics of Exponential Growth

NEXT WEEK: (finish reading Chapter 1)

- Estimating the Remaining Lifetime of Fossil Fuels
- What causes an "energy crisis"?
- Can it be avoided?

Assuming constant growth rate of about 2% per year (doubling time $\mathbf{= 3 5}$ years)			
	Year	Total Number of people	$\begin{gathered} \text { Population } \\ \text { Density } \\ \left(1 / \mathrm{m}^{2}\right) \\ \hline \end{gathered}$
current	1998	6×10^{9}	4×10^{-5}
mass_people=mass_earth	3540	7.5×10^{22}	1.5×10^{8}
using 100% of solar energy	2600	8.5×10^{14}	1.6
using 100% incident on land w/ clouds	2500	1.1×10^{14}	0.2
using 10% through consumption	2345	6.7×10^{11}	1.2×10^{-3}
1/4 land arable; 50% food to animals	2140	8.4×10^{10}	6.3×10^{-4}
typical city			6.2×10^{-4}
Club of Rome - maximum		15-20 billion	1.3×10^{-4}
UN - maximum		11.5 billion	8.6×10^{-5}

Table of Options	
Increase Populations	Decrease Populations
Procreation	Abstention
Motherhood	Contraception/Abortion
Large Families	Small Families
Immigration	Stopping Immigration
Medicine	Disease
Public Health	
Sanitation	
Peace	War
Law \& Order	Murder \& Violence
Scientific Agriculture	Famine
Accident Prevention	Accidents
Clean Air	Pollution
Ignorance of the Problem	

What Causes Exponential Growth?
 change proportional to current amount

- Example \#1: Compound Interest
- interest earned in 1 compounding period $=$ fixed fraction of current amount (interest rate, I)
- e.g. \$1000 at $10 \% /$ year
$-\$ 1000^{*} .10=\$ 100$ total $=\$ 1100$

$$
=\$ 1000 * 1.1=\$ 1000 *(1+.1)^{1}
$$

$-\$ 1100^{*} .10=\$ 110$ total $=\$ 1210$
$=\$ 1000 * 1.1 * 1.1=\$ 1000 *(1+.1)^{2}$

- general formula for compound interest....
$\mathrm{N}(\mathrm{t})=\mathrm{N}_{0}(1+\mathrm{l})^{\mathrm{t}}$
($\mathrm{t}=\#$ of times compounded)
- Example \#2: Population Growth (continuous exponential)
- \# of babies born proportional to \# of potential parents
$-k$ is constant of proportionality (e.g. fraction having offspring each year)
$-\mathrm{dN}(\mathrm{t}) / \mathrm{dt}=\mathrm{k} * \mathrm{~N}(\mathrm{t})$ (differential equation)
- solve by integrating... $\quad \int(1 / \mathrm{N}) \mathrm{dN}=\int \mathrm{k} d t$
- so $\ln (N)=k t$; undo natural \log with exponential
- so general formula for exponential growth is

$$
\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{\mathrm{kt}}
$$

$\mathrm{t}=$ time (continuously varies)

Doubling Time

- $N(t)=N_{0} e^{k t}$
$-2 \mathrm{~N}_{0} / \mathrm{N}_{0}=2=\mathrm{e}^{\mathrm{kt}} \quad$ [undo exponent with \log]
$-\mathrm{t}_{\mathrm{D}}=\ln (2) / \mathrm{k}=100 * \ln (2) / 100 * \mathrm{k}$
$-\ln (2)=0.693$
$-\mathrm{t}_{\mathrm{D}} \approx 70 / \mathrm{k} \quad$ [where k is in percent per time period]
- $\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} *(1+\mathrm{I})^{\mathrm{t}}$
$-2 \mathrm{~N}_{0} / \mathrm{N}_{0}=2=(1+\mathrm{I})^{t_{\mathrm{D}}} \quad$ [undo exponent with log]
$-\ln (2)=\mathrm{t}_{\mathrm{D}} \ln (1+\mathrm{I})$
$-\mathrm{t}_{\mathrm{D}}=\ln (2) / \ln (1+\mathrm{I}) \approx \ln (2) / \mathrm{I}=100 * \ln (2) / 100 * \mathrm{I}$
$-\mathrm{t}_{\mathrm{D}} \approx 70 / \mathrm{I} \quad$ [where I is in percent per time period]

Finite Resources

- The vast majority of our energy is released by the burning of "fossil fuels"
- We process (with a significant energy cost; around 25% ?) these fuels to make them more useful, but they are naturally produced
- Nature takes 100 's of millions of years to renew fossil fuels; so they are non-renewable on human timescales
- They are therefore a "finite" resource

Lifetime of Finite Resource

- Lifetime =
(Amount Available) / (Consumption Rate)
- e.g. 16 gallon tank / 2 gallons per hour --> 8 hours
- But consumption rate is not constant!
- What does this do to the lifetime?
- growth in consumption -> decrease in lifetime
- This simple fact is perhaps the most overlooked and misunderstood aspect in public and social policy regarding energy
- We have even less time than you realize!

How Do We Estimate Lifetime?

1. assume resource is infinite

- discoveries must keep pace with consumption

2. deplete at constant amount (current use rate)

- must decrease per capita use at same rate as population increases
- production must maintain current pace

3. exponential growth until resource expires

- production rate must also increase exponentially

4. Hubbert model

- early exponential rise
- production slows \& peaks when $1 / 2$ resource is consumed
- steady decline in production rate
- symmetric, bell-shaped curve

Example 1 (infinite resource) - What's wrong with this picture?
Thought experiment: assume Earth's interior is 100% coal (or oil).
How long will it sustain exponential growth?

Growth Rate is What Matters !

- Assume entire Earth is made of petroleum
- $\mathrm{N}_{\mathrm{T}}=4 / 3 \pi \mathrm{R}^{3}=1 \mathrm{E} 21 \mathrm{~m}^{3}$
- $\mathrm{N}_{0}=1 \mathrm{E} 12 \mathrm{bbl}=1.6 \mathrm{E} 11 \mathrm{~m}^{3}$
- or even assume $\mathrm{N}_{0}=1 \mathrm{~m}^{3}$
- how long would it take to drain the Earth?

k	$\mathrm{N}_{0}=1 \mathrm{E} 12$	$\mathrm{~N}_{0}=1$
1%	1804 years	4383 years
2%	937 years	2226 years
7%	286 years	654 years
10%	203 years	461 years
25%	85 years	188 years

How Do We Estimate Lifetime?

1. assume resource is infinite

- discoveries must keep pace with consumption

2. deplete at constant amount (current use rate)

- must decrease per capita use at same rate as population increases (increased efficiency and/or lifestyle changes)
- production must maintain current pace

3. exponential growth until resource expires

- production rate must also increase exponentially

4. Hubbert model

- early exponential rise
- production slows \& peaks when $1 / 2$ resource is consumed
- steady decline in production rate
- symmetric, bell-shaped curve

$\begin{aligned} & \text { Lifetime of Current "Reserves" } \\ & \text { (assuming constant consumption) } \end{aligned}$			
Table 1.1 WORLD AND UNITED STATES PROVEN RESERVES: 2008			
Resource	World	United States	Lifetime*
Oil	$\begin{aligned} & 1342 \times 10^{9} \mathrm{bbl} \\ & 7.7 \times 10^{18} \mathrm{Btu} \end{aligned}$	$\begin{aligned} & 29.4 \times 10^{9} \mathrm{bbl} \\ & 0.13 \times 10^{18} \mathrm{Btu} \end{aligned}$	10 years
Natural gas	$\begin{aligned} & 6254 \times 10^{12} \mathrm{cf} \\ & 6.1 \times 10^{18} \mathrm{Btu} \end{aligned}$	$\begin{aligned} & 237 \times 10^{12} \mathrm{cf} \\ & 0.24 \times 10^{18} \mathrm{Btu} \end{aligned}$	12 years
Coal	$\begin{aligned} & 0.93 \times 10^{12} \text { tons } \\ & 23 \times 10^{18} \mathrm{Btu} \end{aligned}$	$\begin{aligned} & 0.26 \times 10^{12} \text { tons } \\ & 6.4 \times 10^{18} \mathrm{Btu} \end{aligned}$	230 years
Oil sands	$\begin{aligned} & 525 \times 10^{9} \mathrm{bbl} \\ & 2.9 \times 10^{18} \mathrm{Btu} \end{aligned}$	$\begin{aligned} & 32 \times 10^{9} \mathrm{bbl} \\ & 0.17 \times 10^{18} \mathrm{Btu} \end{aligned}$	12 years
*Ratio of U.S. reserves to 2008 U.S. production rate			

How Do We Estimate Lifetime?

1. assume resource is infinite

- discoveries must keep pace with consumption

2. deplete at constant amount (current use rate)

- must decrease per capita use at same rate as population increases
- production must maintain current pace

3. exponential growth until resource expires

- production rate must also increase exponentially

4. Hubbert model

- early exponential rise
- production slows \& peaks when $1 / 2$ resource is consumed
- steady decline in production rate
- symmetric, bell-shaped curve

Exponential Expiration Time

- $\mathrm{T}_{\text {exp }}=(1 / \mathrm{k}) \ln \left\{\mathrm{kN}_{\mathrm{T}} / \mathrm{N}_{0}+1\right\}$
- comes from integrating exponential growth:
$-\mathrm{dN}(\mathrm{t}) / \mathrm{dt}=\mathrm{k} * \mathrm{~N}(\mathrm{t})$
$-\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{\mathrm{kt}}$
$-N_{T}=\int^{T_{e x p}} N_{0} e^{k t} d t$
- Must be able to extract resource as fast as it is needed. But...
"oil doesn't come from a hole in the ground, it comes from rocks" (Kenneth Deffeyes)

