Lec #3: Energy Implications of Growth

Previous:

- Bartlett Video, Part 1: Mathematics of Growth
- Introduction to Course

TODAY:

- Discussion of Population Growth and its Implications for Resource Consumption
- Mathematics of Exponential Growth
- NEXT WEEK: (finish reading Chapter 1)
- Estimating the Remaining Lifetime of Fossil Fuels
- What causes an "energy crisis"?
- Can it be avoided?

	Year	Total Number of people	Population Density (1/m ²)
current	1998	6x10 ⁹	4x10 ⁻⁵
mass_people=mass_earth	3540	7.5x10 ²²	1.5x10 ⁸
using 100% of solar energy	2600	8.5x10 ¹⁴	1.6
using 100% incident on land w/ clouds	2500	1.1x10 ¹⁴	0.2
using 10% through consumption	2345	6.7x10 ¹¹	1.2x10 ⁻³
1/4 land arable; 50% food to animals	2140	8.4x10 ¹⁰	6.3x10 ⁻⁴
typical city			6.2x10 ⁻⁴
Club of Rome - maximum		15-20 billion	1.3x10 ⁻⁴
UN - maximum		11.5 billion	8.6x10 ⁻⁵

Finite Resources

- The vast majority of our energy is released by the burning of "fossil fuels"
- We *process* (with a significant energy cost; around 25% ?) these fuels to make them more useful, but they are naturally produced
- Nature takes 100's of millions of years to renew fossil fuels; so they are *non-renewable* on human timescales
- They are therefore a "finite" resource

Lifetime of Finite Resource

- Lifetime =

 (Amount Available) / (Consumption Rate)
 e.g. 16 gallon tank / 2 gallons per hour --> 8 hours
- But consumption rate is not constant!
- What does this do to the lifetime?
- growth in consumption -> decrease in lifetime
- This simple fact is perhaps the most overlooked and misunderstood aspect in public and social policy regarding energy
- We have even less time than you realize!

Example 1 (infinite resource) - What's wrong with this picture? Thought experiment: assume Earth's interior is 100% coal (or oil).

How Do We Estimate Lifetime?

- 1. assume resource is infinite
 - discoveries must keep pace with consumption
- 2. deplete at constant amount (current use rate)
- must decrease per capita use at same rate as population increases
 - production must maintain current pace
- exponential growth until resource expires
 production rate must also increase exponentially
- 4. Hubbert model
 - early exponential rise
 - production slows & peaks when 1/2 resource is consumed
 - steady decline in production rate
 - symmetric, bell-shaped curve

Growth Rate is What Matters !

- Assume entire Earth is made of petroleum
- $N_T = 4/3 \pi R^3 = 1 E 21 m^3$
- $N_0 = 1E12 \text{ bbl} = 1.6 \text{ E} 11 \text{ m}^3$
- or even assume $N_0 = 1 \text{ m}^3$
- how long would it take to drain the Earth?

k	$N_0 = 1E12$	N ₀ =1
1%	1804 years	4383 years
2%	937 years	2226 years
7%	286 years	654 years
10%	203 years	461 years
25%	85 years	188 years

How Do We Estimate Lifetime?

- 1. assume resource is infinite
- discoveries must keep pace with consumption
- deplete at constant amount (current use rate)
 must <u>decrease</u> per capita use at same rate as population
 - increases (increased efficiency and/or lifestyle changes)
 production must *maintain* current pace
- 3. exponential growth until resource expires
 - production rate must also increase exponentially
- 4. Hubbert model
 - early exponential rise
 - production slows & peaks when 1/2 resource is consumed
 - steady decline in production rate
 - symmetric, bell-shaped curve

Lifetime of Current "Reserves" (assuming constant consumption)					
Table 1.1	WORLD AND UNIT	ED STATES PROVE	N RESERVES: 2008		
Oil	1342 × 10 ⁹ bbl 7.7 × 10 ¹⁸ Btu	29.4 × 10 ⁹ bbl 0.13 × 10 ¹⁸ Btu	10 years		
Natural gas	6254 × 10 ¹² cf 6.1 × 10 ¹⁸ Btu	237 × 10 ¹² cf 0.24 × 10 ¹⁸ Btu	12 years		
Coal	0.93 × 10 ¹² tons 23 × 10 ¹⁸ Btu	0.26 × 10 ¹² tons 6.4 × 10 ¹⁸ Btu	230 years		
Oil sands	525 × 10 ⁹ bbl 2.9 × 10 ¹⁸ Btu	32 × 10 ⁹ bbl 0.17 × 10 ¹⁸ Btu	12 years		

Exponential Expiration Time

- $T_{exp} = (1/k) \ln \{kN_T/N_0 + 1\}$
 - comes from integrating exponential growth:

$$- dN(t)/dt = k*N(t)$$

- $-N(t)=N_0e^{kt}$
- $N_T = \int^{T_{exp}} N_0 e^{kt} dt$
- Must be able to extract resource as fast as it is needed. But...

"oil doesn't come from a hole in the ground, it comes from rocks" (Kenneth Deffeyes)

