

• What causes an "oil crisis"? Can it be avoided?

NEXT WEEK: Mechanical Energy (Chapters 2 & 3)

- Forms of Energy; Conversion of Energy
- Laws of Motion; Forces in Nature
- Work, Kinetic Energy, Potential Energy, Power
- Conservation of Energy

- Finite resources becoming *increasingly difficult* to exploit (hence the Hubbert peaks)
- Running out of the resources is NOT the problem!

(assuming constant consumption)					
Table I.I WORLD AND UNITED STATES PROVEN RESERVES: 2003					
Resource	World	United States	Lifetime*		
Oil	1213×10^{9} bbl 7.0 $\times 10^{18}$ Btu	22.7×10^9 bbl 0.12×10^{18} Btu	10 years		
Natural gas	$\begin{array}{l} 5505 \times 10^{12} \ \text{cf} \\ 5.4 \times 10^{18} \ \text{Btu} \end{array}$	$187 \times 10^{12} \text{ cf}$ 0.19 × 10 ¹⁸ Btu	9 years		
Coal	$\begin{array}{c} 1.08 \times 10^{12} \text{ tons} \\ 27 \times 10^{18} \text{ Btu} \end{array}$	$\begin{array}{c} 0.27 \times 10^{12} \text{ tons} \\ 7 \times 10^{18} \text{ Btu} \end{array}$	250 years		
Oil sands	272×10^9 bbl 1.5 $\times10^{18}$ Btu	$\begin{array}{c} 22\times10^9~bbl\\ 0.12\times10^{18}~Btu \end{array}$	8 years		

Table 1.1 WORLD AND UNITED STATES PROVEN RESERVES: 20				
Resource	World	United States	Lifetime*	
Oil	1342 × 10 ⁹ bbl 7.7 × 10 ¹⁸ Btu	29.4 × 10 ⁹ bbl 0.13 × 10 ¹⁸ Btu	10 years	
Natural gas	6254 × 10 ¹² cf 6.1 × 10 ¹⁸ Btu	237 × 10 ¹² cf 0.24 × 10 ¹⁸ Btu	12 years	
Coal	0.93 × 10 ¹² tons 23 × 10 ¹⁸ Btu	0.26 × 10 ¹² tons 6.4 × 10 ¹⁸ Btu	230 years	
Oil sands	525 × 10 ⁹ bbl 2.9 × 10 ¹⁸ Btu	32 × 10 ⁹ bbl	12 years	

What Then Must We Do?

- Growth must stop. Earth has finite carrying capacity, and we are approaching it (almost certainly in *your* lifetime).
- Per capita use will go up in developing world; hopefully down in developed world.
- Tremendous investment in fossil fuels required.
- Must also accelerate pace of renewables.
- Nuclear power?
- Conservation plays a critical role!