Lec \#6: Energy Fundamentals

LAST TIME: Expiring Resources and Crises

TODAY: Mechanical Energy (Chapters 2 \& 3)

- Forms of Energy
- Laws of Motion; Forces in Nature
- Work, Kinetic Energy, Potential Energy, Power
- Conservation of Energy

NEXT: Thermal Energy; Thermodynamics (Chapters 4 \&5)

- 2nd Law of Motion: to change an object's state of motion, a net "force" must be applied; amount of change is directly proportional to amount of force

Force $=$ mass x acceleration

- acceleration can be change in speed or direction
- mass is a measure of inertia (resistance to change)
- Ponder this for now: What is a "Force?"
- this simple equation forms the basis of the Physics of motion; it led to the development of Calculus
- 3rd Law of Motion: for every force applied to an object, there is an equal force in the opposite direction from that object

Newton's Laws of Motion

- 1st Law of Motion: any object will continue in its present state of motion (speed and direction) unless/until it is "acted upon" by a net outside "force"
- object at rest ---> stays at rest
- object in motion ---> stays in motion at a constant speed and in a straight line
- this seems to contradict every day experience, and maybe even "common sense"
- our world is full of frictional forces, but they are not present in the "vacuum" of space
"INERTIA"

Forces in Nature

- Gravity $\quad \mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
$-\mathrm{g}=\mathrm{GM}_{\mathrm{e}} / \mathrm{R}_{\mathrm{e}}{ }^{2}=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}$
- on Earth, F = mg
- Electrostatic $\quad \mathrm{F}=\mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$
- attractive or repulsive
- Magnetic (electromagnetic)
- Nuclear
- These are all "conservative".
- depend only on position
- mechanical energy is conserved (with proper accounting)
- Unfortunately (?), mother nature has other forces that are not conservative so that
- mechanical energy NOT conserved
- depend on something other than position
- examples
- Friction: depends on "roughness" of surface, velocity, mass
- Drag: depends on aerodynamics (shape); cube of velocity!

- related with differentiation and integration
- Newton invented calculus for just this reason
- e.g. Motion due to gravity @ Earth's surface
$\mathbf{F}=\mathrm{ma}=\mathrm{mg} \quad\left(\mathrm{g}=\right.$ constant $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ toward Earth $)$
$\mathbf{a}=\mathbf{g}=\mathrm{d} \mathbf{v} / \mathrm{dt}=\mathrm{d} \mathbf{s}^{2} / \mathrm{dt}{ }^{2}$
$\mathbf{v}=\int_{0}^{\mathrm{t}} \mathbf{g ~ d t}=\mathrm{gt}+\mathrm{v}(\mathrm{t}=0)$
$\mathbf{s}=\int_{0}^{\mathrm{t}} \mathbf{v} \mathrm{dt}=1 / 2 \mathrm{gt}^{2}+\mathrm{s}(\mathrm{t}=0)$
- e.g. $a=0$
$\mathrm{v}=$ constant; $\quad\left(\mathrm{s}-\mathrm{s}_{0}\right)=\mathrm{vt} \quad$ [distance $=$ rate x time]

Examples of Mechanical Energy

- direct use of energy to produce motion
- automobiles, trains, airplanes, etc.
- motors \& generators
- pumps and compressors
- fans
- labor saving appliances and tools
- others?
- what else do we use energy for?
- example: forces acting on an automobile

Rotational Analogs		
Displacement $\boldsymbol{\theta}(\mathrm{t})$ dimensionless: radians $2 \pi \mathrm{rad}=360^{\circ}$ Angular Velocity $\boldsymbol{\omega}(\mathrm{t})=\mathrm{d} \boldsymbol{\theta} / \mathrm{dt}$ Angular Acceleration $\boldsymbol{\alpha}(\mathrm{t})=\mathrm{d} \boldsymbol{\omega} / \mathrm{dt}$ $=\mathrm{d}^{2} \boldsymbol{\theta} / \mathrm{dt}^{2}$ Moment $/ \mathrm{sec}\left(\mathrm{s}^{-1}\right)$ Inertia $\mathbf{I}=\int \mathrm{m}(\mathrm{r}) \mathrm{dr}$ Torque $\boldsymbol{\tau}=\mathrm{I} \boldsymbol{\alpha}$	$(\mathrm{kg} \mathrm{m})$	

WORK
Work $=$ Force x Distance
- really, it's Work $=\mathbf{F} \cdot \mathbf{s}=\mathrm{F}$ s $\cos \theta \quad$!
- only net force in direction of motion is relevant
- scalar, not vector
- (+) if force is applied in direction of motion,
work is done TO the "system"; "energy" is
added to the system; system accelerates;
velocity increases
- (-) if force is applied in opposite direction,
energy is removed FROM system; system
decelerates; velocity decreases

Kinetic Energy

- energy associated with motion
- could be converted to work if motion brought to a halt

$$
\mathrm{KE}=(1 / 2) \mathrm{m} \mathrm{v}^{2}
$$

- scalar, not vector (v is speed, not velocity)
- SI units: $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}=\mathrm{Nt} \mathrm{m}=\operatorname{Joule}(\mathrm{J})$
- cgs units: $\mathrm{g} \mathrm{cm}^{2} \mathrm{~s}^{-2}=\operatorname{erg}\left(1 \mathrm{erg}=10^{-7} \mathrm{~J}\right)$
- english units: slug $\mathrm{ft}^{2} \mathrm{~s}^{-2}=$ foot-pound
- other units: calorie, BTU, kilowatt-hour

Kinetic Energies for Various Objects			
Object mass (kg) speed $(\mathrm{m} / \mathrm{s})$ KE (J) Earth orbiting Sun $6.0 \mathrm{E}-24$ 3.0 E 4 2.7 E 33 Moon orbiting Earth $7.4 \mathrm{E}-22$ 1.0 E 3 3.8 E 28 Rocket @ escape speed 500 1.1 E 4 3.1 E 10 Car @ 55 mph 2000 25 6.3 E 5 Running athlete 70 10 3.5 E 3 rock dropped from 10m 1 14 9.8 golf ball @ terminal speed .046 44 4.5 raindrop @ terminal speed $3.5 \mathrm{E}-5$ 9 $1.4 \mathrm{E}-3$ oxygen molecule in air $5.3 \mathrm{E} \mathrm{-26}$ 500 $6.6 \mathrm{E}-21$			

Potential Energy

- if force is conservative, change in POSITION can be converted to a change in VELOCITY (i.e. just let go and let force act over a distance)
- Total Mechanical Energy = constant
= Mechanical KE + Mechanical PE
- e.g. Gravity
- PE=work=force x distance $=(\mathrm{mg})(\mathrm{h})$
- hold above ground: $\mathrm{v}=0, \mathrm{KE}=0, \quad \mathrm{PE}=\mathrm{mgh}$
- drop; hits ground $w / v=g t, K E=1 / 2 m v^{2}, P E=0$

Summary of Units			
Table 2.4 UNITS IN MECHANICS			
Quantity	SI	English	Conversions
Velocity	m / s	ft / s	$\begin{aligned} 1 \mathrm{ft} / \mathrm{s} & =0.305 \mathrm{~m} / \mathrm{s} \\ 1 \mathrm{mph} & =0.447 \mathrm{~m} / \mathrm{s} \end{aligned}$
Acceleration	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$1 \mathrm{ft} / \mathrm{s}^{2}=0.305 \mathrm{~m} / \mathrm{s}^{2}$
Force	newton (N)	lb	$\mathrm{I} \mathrm{lb}=4.45 \mathrm{~N}$
Energy	joule (J)	ft -lb	$1 \mathrm{ft}-\mathrm{lb}=1.356 \mathrm{~J}$
Power	watt (W)	$\mathrm{ft}-\mathrm{lb} / \mathrm{sec}, \mathrm{hp}$	$550 \mathrm{ft}-\mathrm{lb} / \mathrm{s}=1 \mathrm{hp}=746 \mathrm{~W}$

$$
\mathrm{E}=\mathrm{P} x \mathrm{t} \text {, so } 1 \mathrm{kWh}=1000 \mathrm{~J} / \mathrm{s} * 3600 \mathrm{~s}
$$

kWh is a unit of energy; what is electricity cost/kWh?

Recap

- $\mathrm{KE}=(1 / 2) \mathrm{m} \mathrm{v}^{2}$
- change in speed -> change in KE
- note: can change velocity w/out change in KE
- Work $=$ Force x Distance $\mathrm{x}(\cos \theta)$
- So PE = Force x Distance (e.g. mgh for gravity)
- If forces are "conservative":
- Mechanical KE + Mechanical PE = constant
- Work = change in Mechanical Energy
- If not conservative, where does the energy go?

