Lec #6: Energy Fundamentals <u>LAST TIME: Expiring Resources and Crises</u>

TODAY: Mechanical Energy (Chapters 2 & 3)

- Forms of Energy
- Laws of Motion; Forces in Nature
- Work, Kinetic Energy, Potential Energy, Power
- Conservation of Energy

NEXT: Thermal Energy; Thermodynamics (Chapters 4 &5)

Newton's Laws of Motion

- 1st Law of Motion: any object will continue in its present state of motion (speed and direction) unless/until it is "acted upon" by a net outside "force"
 - object at rest ---> stays at rest
 - object in motion ---> stays in motion at a constant speed and in a straight line
 - this seems to contradict every day experience, and maybe even "common sense"
 - our world is full of frictional forces, but they are not present in the "vacuum" of space

"INERTIA"

- 2nd Law of Motion: to change an object's state of motion, a net "force" must be applied; amount of change is directly proportional to amount of force Force = mass x acceleration
 - <u>acceleration</u> can be change in speed **or** direction
 - mass is a measure of inertia (resistance to change)
 - Ponder this for now: What is a "Force?"
 - this simple equation forms the basis of the Physics of motion; it led to the development of Calculus
- 3rd Law of Motion: for every force applied to an object, there is an equal force in the opposite direction from that object

Forces in Nature

- Gravity $F = G m_1 m_2/r^2$ - g = G M_e/R_e² = 9.8 m/s² = 32 ft/s² - on Earth, F = mg
- Electrostatic $F = q_1 q_2/r^2$ - attractive or repulsive
- Magnetic (electromagnetic)
- Nuclear
- These are all "conservative".
 - depend only on position
 - mechanical energy is <u>conserved</u> (with proper accounting)

- Unfortunately (?), mother nature has other forces that are not conservative so that

 mechanical energy NOT conserved

 - depend on something other than position
- examples
 - Friction: depends on "roughness" of surface, velocity, mass
 - Drag: depends on aerodynamics (shape); cube of velocity!

Vectors v. Scalers; Units			
Position	s(t)	meters (m)	
	(x,y,z v. time)	feet (ft)	
Velocity	$\mathbf{v}(t) = d\mathbf{s}/dt$	meters/second (m/s)	
	speed = $ \mathbf{v}(t) $	feet/second (ft/s) (fp	
Acceleration	$\mathbf{a}(t) = d\mathbf{v}/dt$	$(m/s)/s = m/s^2$	
	$= d^2 s/dt^2$	ft/s ²	
Mass	measure of inertia	kilograms (kg)	
	amount of "stuff"	slugs	
Force	F; long-range forces	Newtons (kg m / s ²)	
	contact forces	pounds (lb)	

```
s, v, a, F are vector quantities
related with differentiation and integration
Newton invented calculus for just this reason
e.g. Motion due to gravity @ Earth's surface
F = ma = mg (g = constant = 9.8 m/s<sup>2</sup> toward Earth)
a = g = dv/dt = ds<sup>2</sup>/dt<sup>2</sup>
v=∫<sub>0</sub><sup>t</sup> g dt = gt + v(t=0)
s=∫<sub>0</sub><sup>t</sup> v dt = 1/2 gt<sup>2</sup> + s(t=0)
e.g. a=0
v = constant; (s-s<sub>0</sub>) = v t [distance=rate x time]
```

D: 1 /	0(1)	
Displacement	θ (t)	dimensionless: radians
		2π rad = 360°
Angular	$\boldsymbol{\omega}(t) = \mathrm{d}\boldsymbol{\theta} /\mathrm{d}t$	radians/sec (s ⁻¹)
Velocity		
Angular	$\boldsymbol{\alpha}(t) = d\boldsymbol{\omega}/dt$	(s ⁻²)
Acceleration	$= d^2 \theta / dt^2$	
Moment of	$\mathbf{I} = \int \mathbf{m}(\mathbf{r}) \mathrm{d}\mathbf{r}$	(kg m)
Inertia		
Torque	$\tau = I \alpha$	(Nt m)

Examples of Mechanical Energy

- *direct* use of energy to produce motion – automobiles, trains, airplanes, etc.
 - motors & generators
 - pumps and compressors
 - fans
 - labor saving appliances and tools
 - others?
- what else do we use energy for?
- example: forces acting on an automobile

WORK

Work = Force x Distance

- really, it's Work = $\mathbf{F} \cdot \mathbf{s} = F \operatorname{s} \cos \theta$!
- only <u>net force in direction of motion</u> is relevant
 scalar, not vector
- (+) if force is applied in direction of motion, work is done TO the "system"; "energy" is added to the system; system accelerates; velocity increases
- (-) if force is applied in opposite direction, energy is removed FROM system; system decelerates; velocity decreases

• If all forces are "conservative" (and if you allow for "*potential energy*"):

Work = Δ (Mechanical Energy) (change in mechanical energy)

- · Energy is measure of "Capacity to do Work"
- In the REAL world, there is never a perfect conversion between work and "kinetic energy"
 - Friction, drag, etc. non-conservative
 - Where does energy go?
 - $-\Delta Energy = Work + ?$ (next Chapter)

Kinetic Energy

- energy associated with motion
- could be converted to work if motion brought to a halt

$KE = (1/2) m v^2$

- scalar, not vector (v is speed, not velocity)
- SI units: kg m² s⁻² = Nt m = Joule (J)
- cgs units: g cm² s⁻² = erg (1 erg = 10⁻⁷ J)
- english units: slug ft² s⁻² = foot-pound
- other units: calorie, BTU, kilowatt-hour

Object	mass	speed	KE
	(kg)	(m/s)	(J)
Earth orbiting Sun	6.0 E -24	3.0 E 4	2.7 E 33
Moon orbiting Earth	7.4 E -22	1.0 E 3	3.8 E 28
Rocket @ escape speed	500	1.1 E 4	3.1 E 10
Car @ 55 mph	2000	25	6.3 E 5
Running athlete	70	10	3.5 E 3
rock dropped from 10m	1	14	9.8
golf ball @ terminal speed	.046	44	4.5
raindrop @ terminal speed	3.5 E -5	9	1.4 E -3
oxygen molecule in air	5.3 E -26	500	6.6 E -21

Potential Energy

- if force is conservative, change in POSITION can be converted to a change in VELOCITY (i.e. just let go and let force act over a distance)
- Total Mechanical Energy = constant = Mechanical KE + Mechanical PE
- e.g. Gravity
 - PE=work=force x distance= (mg)(h)
 - hold above ground: v=0, KE=0, PE=mgh
 - drop; hits ground w/ v=gt, KE=1/2mv², PE=0

Power

- Rate at which work is done. Energy / time

 defined "instantaneously"; depends on how fast
 you move something with a force
 - Power is what we transfer from our electrical outlets to our appliances (e.g. to turn a motor) or from our engine to turn our wheels
 - Energy is what we pay for (but maybe we would be better off if they could meter power)
- Units: energy/time
 - Joule/second (1 Watt = 1 J/s)
 - Horsepower (1 HP = 746 W)

Summary of Units						
Table 2.4 UNITS IN MECHANICS						
Quantity	SI	English	Conversions			
Velocity	m/s	ft/s	I ft/s = 0.305 m/s I mph = 0.447 m/s			
Acceleration	m/s ²	ft/s ²	$1 \text{ ft/s}^2 = 0.305 \text{ m/s}^2$			
Force	newton (N)	lb	I Ib = 4.45 N			
Energy	joule (J)	ft-lb	ft-lb = .356			
Power	watt (W)	ft-lb/sec, hp	550 ft-lb/s = 1 hp = 746 V			

E = P x t, so 1 kWh = 1000 J/s * 3600 skWh is a unit of <u>energy</u>; what is electricity cost/kWh?

Recap

- KE = (1/2) m v²
 - change in speed -> change in KE
 - note: can change velocity w/out change in KE
- Work = Force x Distance x $(\cos \theta)$
- So PE = Force x Distance (e.g. mgh for gravity)
- If forces are "conservative":
 - Mechanical KE + Mechanical PE = constant
 Work = change in Mechanical Energy
- If not conservative, where does the energy go?