Lec \#8: Thermal Energy (Chaps. 3 \& 4)
LAST: Mechanical Energy

- Laws of Motion; Forces
- Work, Kinetic Energy, Potential Energy, Power

TODAY: Thermal Energy. I.

- Internal Kinetic and Potential Energy
- Temperature and Heat
- Laws of Thermodynamics
- Specific Heat \& Phase Transitions THURSDAY: Thermal Energy. II.
- Heat Transfer (conduction, convection, radiation)
- Heat Engines \& Efficiency

Recap

- Work $=$ Force x Distance $\mathrm{x}(\cos \theta)$
- Power=d/dt (Work) (instantaneous)
- $\mathrm{KE}=(1 / 2) \mathrm{m} \mathrm{v}^{2}$
- change in speed -> change in KE
- note: can change velocity w/out change in KE
- $\mathrm{PE}=$ Force x Distance (e.g. mgh for gravity)
- If forces are "conservative":
- Mechanical KE + Mechanical PE = constant
- Work = change in Mechanical Energy
- If not conservative, where does the energy go?

How Do We Measure Total Energy?

- Total Energy = External (M.E.) + Internal
- Internal Kinetic: Thermal
- Internal Potential: Chemical; Nuclear
- molecular bonds
- atomic bonds
- nuclear bonds
- We can't measure Total Energy, but we know that it's huge and takes many forms
- We can, however, measure changes....

First Law of Thermodynamics

- $\Delta \mathrm{E}=\Delta \mathrm{External}+\Delta$ Internal $=$ Work + Heat
- In practice, "heat" usually refers only to a change in internal (thermal) energy, not a basic property of a substance.
- objects don't contain heat, but they do contain energy
- "Thermal energy" usually refers only to internal kinetic energy, though this is only a small fraction of the total internal energy
- To measure thermal energy, we use "temperature"

Temperature

- Temperature not measure of total internal energy!
- Temperature is a measure of average kinetic energy of the molecules
- Internal K.E. $->0$ at "absolute zero", increases with temperature (but must use absolute scale)
- When 2 objects are brought into contact
- if $T_{1}>T_{2}$, "thermal energy" transfer (heat) from T_{1} to T_{2}
- If $\mathrm{T}_{1}=\mathrm{T}_{2}$, no energy transfer
- "Heat" is the transfer of thermal energy
from higher Temp ---> lower Temp

Table 4.1 TEMPERATURES OF SOME COMMON PHENOMENA*			
	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	K
Water, ice point	0	32	273
Water, boiling point	100	212	373
Absolute zero	-273	-460	0
Liquid nitrogen boiling point	-196	-319	77
Liquid helium boiling point	-269	-454	4
Zinc, melting point	420	787	693
Gold, melting point	1063	1945	1336
Solid CO_{2} (Dry Ice) sublimation**	-78	-109	195
*At atmospheric pressure **Process of going from a solid directly to a gas phase - 2006 Thenvison Hepher Education You should know how to convert between F \& C. Absolute scales: Kelvin (${ }^{\circ} \mathrm{C}$) and Rankine (${ }^{\circ} \mathrm{F}$).			

Temperature

- Temperature not measure of total internal energy!
- Temperature is a measure of average kinetic energy of the molecules
- Internal K.E. -> 0 at "absolute zero", increases with temperature (but must use absolute scale)
- When 2 objects are brought into contact
- if $T_{1}>T_{2}$, "thermal energy" transfer (heat) from T_{1} to T_{2} - if $\mathrm{T}_{1}=\mathrm{T}_{2}$, no (net) energy transfer
- "Heat" is the transfer of thermal energy from higher Temp ---> lower Temp
- thought experiment: why do some objects feel colder?

Temperature (continued)

- Temperature parameterizes average energy
- And it's something we can measure!
- Total internal energy = average * \# of particles
- energy content depends on mass and temperature
- change in energy \sim change in temperature
- We can "parameterize" other internal energies (kinetic or potential) with temperatures
- T_{k} kinetic temperature of molecules
- electron temperature, ion temperature, atomic excitation temperature, radiation temperature.....

Second Law of Thermodynamics

- an isolated system will steadily change until it reaches "THERMAL EQUILIBRIUM"
 - internal energy shared equally among all forms!
 - everything at same temperature, all temps. same!
 - degree of "disorder" always increases until thermal equilibrium
 - state of maximum disorder
 - disorder ("entropy") never decreases on its own

m . impossible to transfer heat completely into work:
$\Delta \mathrm{E}=\mathrm{W}+\mathrm{Q} \quad \mathrm{W}->\mathrm{Q}$ up to $100 \% \quad \mathrm{Q}-->\mathrm{W}<100 \%$

- many processes in nature are irreversible
- even reversible processes aren't 100% efficient

Thermal Energy Units

- 1 calorie = energy required to change temperature of 1 g of water by 1° Celsius
- 1 food Calorie $=1$ kilocalorie (1000 calories)
- $1 \mathrm{BTU}=$ energy required to change 1 pound of water by 1° Fahrenheit
- "Mechanical Equivalent of Heat":
- historical reasons for different units
-1 calorie $=4.184$ Joules
$-1 \mathrm{BTU}=1055 \mathrm{~J}=252 \mathrm{cal}=778 \mathrm{ft}-\mathrm{lb}$

Specific Heat

- Heat "flows" from higher temp. to lower temp.
- can either do work (mechanical energy)
- or change internal energy (change in temperature)
- Change in Temperature for given amount of heat depends on substance
- $\mathrm{Q}=\mathrm{c}_{\mathrm{s}} \mathrm{m} \Delta \mathrm{T}$
$-\mathrm{Q}=$ heat $=$ energy difference
$-\mathrm{c}_{\mathrm{s}}$ is "specific heat"
- depends on material (why?)
- also depends on the nature of the process (e.g. constant volume, constant pressure, ...)
- it even depends on the temperature and pressure

Material	Specific Heat (J/kg/ ${ }^{\circ} \mathrm{C}$)	Specific Heat (Btu/lb/ ${ }^{\circ} \mathrm{F}$)
Water \longleftarrow	4186	1.00
Aluminum	900	0.22
Iron	448	0.12
Copper	387	0.093
Concrete	960	0.23
Glass	840	0.20
White pine	2800	0.67
Ice	2090	0.50
Air	1004	0.24
Rock	840	0.20
Specific Heat: temperature of Note that wate Why? How ca	mount of energy nee fixed mass of a sub has a very high speci we take advantage	to change the ce by a fixed amount heat! is?

