Lec #9:	Thermal Energy II. (Chaps. 4 & 5)				
LAST	LAST TIME: Thermal Energy I.				
•	Internal Kinetic and Potential Energy				
•	Temperature and Heat				
•	Laws of Thermodynamics				
•	Specific Heat				
TODAY: Thermal Energy. II.					
•	Phase Transitions				
•	Conduction, Convection, Radiation				
•	Thermodynamic Efficiency & Heat Engines				
NEXT WEEK: Electricity and Magnetism					
•	skip to Chapters 10 & 11 (Electromagnetism)				

- "convection" (motion of material)
- "radiation" (action at distance; photon exchange)

"Electromagnetic" Radiation

- no medium is required (goes through vacuum!)
- action at a distance
- emission $\propto T^4$ (2x temp = 16 times the energy flow)
- emission and absorption balanced in thermal equilibrium (and balanced with collisions)
- radio, infrared, visual, ultraviolet, x-ray, γ-ray are all forms of emr
- · what we perceive as "heat" is often infrared

- vacuum works great; still air pretty good, too

 $Q/t = A \sigma T^4$

- Radiation
 - reflect infrared with shiny materials
 - e.g. "Dewar flask"

- <u>Maximum</u> Efficiency = $100\% \text{ x} (T_H T_C) / T_H$
- caution: must use absolute temperature scale!
- $T_H > T_C$ so ratio is always <1

	Table 3.1 EFFICIENCIES OF SOME ENERGY CONVERSION		
	DEVICES AND SYSTEMS	544	
• Efficiency = 100% x	Electric generators (mechanical → electrical)	70-99%	
(useful energy out) /	Electric motor (electrical → mechanical)	50-90%	
(available energy in)	Gas furnace (chemical → thermal)	70-95%	
• seldom, if ever, 100%	Wind turbine (mechanical → electrical)	35-50%	
• Net efficiency = product	Fossil fuel power plant (chemical → thermal → mechanical → electrical)	30-40%	
of individual efficiencies	Nuclear power plant (nuclear → thermal → mechanical → electrical)	30-35%	
 Chain that is weaker than - its weaker time! 	Automobile engine (chemical \rightarrow thermal \rightarrow mechanical)	20-30%	
its weakest link:	Fluorescent lamp (electrical → light)	20%	
	Incandescent lamp (electrical → light)	5%	
	Solar cell (light \rightarrow electrical)	5-28%	
	Fuel cell (chemical	40-60%	

Table 4.	3 EXAMPLES OF HEA	T ENGINES				
Vapor or Rankine cycle Steam engine (electrical power plant, old train locomotive) Refrigerator, heat pump (using Freon)						
Gas cycle Internal combustion: Otto, Diesel cycles (automobiles, trucks) External combustion: gas turbine (airplanes, electrical power plant), Stirling cycle						
	<u>howstuffwe</u> (heat->work) steam engine gasoline engine diesel engine	orks.com (work->heat) air conditioners dehumidifiers heat pumps				
$W_{\rm eff} = F \times d = \Delta {\rm TE}$	gas turbine	refrigerators				